|
<!DOCTYPE html> |
|
<html> |
|
|
|
<head> |
|
<link rel="stylesheet" href="file/style.css" /> |
|
<link rel="preconnect" href="https://fonts.googleapis.com" /> |
|
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin /> |
|
<link href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap" |
|
rel="stylesheet" /> |
|
<title>Bilateral View Hypercomplex Breast Classification</title> |
|
</head> |
|
|
|
<body> |
|
<div class="container"> |
|
<h1 class="title">MedSAM: Segment Anything in Medical Images</h1> |
|
<h2 class="subtitle">Kalbe Digital Lab</h2> |
|
<section class="overview"> |
|
<div class="grid-container"> |
|
<h3 class="overview-heading"><span class="vl">Overview</span></h3> |
|
<p class="overview-content"> |
|
MedSAM, a foundation model for universal medical image segmentation. MedSAM is adapted from the SAM |
|
model on an unprecedented scale, with more than one million medical image-mask pairs. |
|
<br /> |
|
Reference: <a href="https://arxiv.org/abs/2304.12306" |
|
target="_blank">https://arxiv.org/abs/2204.05798</a> |
|
</p> |
|
</div> |
|
<div class="grid-container"> |
|
<h3 class="overview-heading"><span class="vl">Dataset</span></h3> |
|
<div> |
|
<p class="overview-content">The model is trained using a diverse and large-scale medical image |
|
segmentation dataset with 1,090,486 medical image-mask pairs, covering 15 imaging modalities, |
|
over 30 cancer types, and a multitude of imaging protocols.</p> |
|
<ul> |
|
<li>Target: Capturing a broad spectrum of anatomies and lesions across different modalities. |
|
</li> |
|
<li>Task: Segmentation</li> |
|
<li>Modality: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Endoscopy, Ultrasound, |
|
Pathology, Fundus, Dermoscopy, Mammography, and Optical Coherence Tomography (OCT).</li> |
|
</ul> |
|
</div> |
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|