Kaludi commited on
Commit
fa5a555
·
1 Parent(s): ef4c08f

Upload 4 files

Browse files
Files changed (3) hide show
  1. README.md +4 -5
  2. app.py +66 -0
  3. requirements.txt +17 -0
README.md CHANGED
@@ -1,13 +1,12 @@
1
  ---
2
- title: Reviews-Sentiment-Analysis App
3
- emoji: 💻
4
- colorFrom: green
5
- colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 3.16.2
8
  app_file: app.py
9
  pinned: false
10
- license: openrail
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Reviews Sentiment Analysis App
3
+ emoji: 🏃
4
+ colorFrom: red
5
+ colorTo: pink
6
  sdk: gradio
7
  sdk_version: 3.16.2
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import the required Libraries
2
+ import gradio as gr
3
+ import numpy as np
4
+ import pandas as pd
5
+ import pickle
6
+ import transformers
7
+ from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification,TFAutoModelForSequenceClassification
8
+ from scipy.special import softmax
9
+ # Requirements
10
+ model_path = "Kaludi/Reviews-Sentiment-Analysis"
11
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
12
+ config = AutoConfig.from_pretrained(model_path)
13
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
14
+
15
+ # Preprocess text (username and link placeholders)
16
+ def preprocess(text):
17
+ new_text = []
18
+ for t in text.split(" "):
19
+ t = "@user" if t.startswith("@") and len(t) > 1 else t
20
+ t = "http" if t.startswith("http") else t
21
+ new_text.append(t)
22
+ return " ".join(new_text)
23
+
24
+ # ---- Function to process the input and return prediction
25
+ def sentiment_analysis(text):
26
+ text = preprocess(text)
27
+
28
+ encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models
29
+ output = model(**encoded_input)
30
+ scores_ = output[0][0].detach().numpy()
31
+ scores_ = softmax(scores_)
32
+
33
+ # Format output dict of scores
34
+ labels = ["Negative", "Positive"]
35
+ scores = {l:float(s) for (l,s) in zip(labels, scores_) }
36
+
37
+ return scores
38
+
39
+
40
+ # ---- Gradio app interface
41
+ app = gr.Interface(fn = sentiment_analysis,
42
+ inputs = gr.Textbox("Write your text or review here..."),
43
+ outputs = "label",
44
+ title = "Sentiment Analysis of Customer Reviews",
45
+ description = "A tool that analyzes the overall sentiment of customer reviews for a specific product or servicem, wheather it's positive or negative. This analysis is performed by using natural language processing algorithms and machine learning from the model 'Reviews-Sentiment-Analysis' trained by Kaludi, allowing businesses to gain valuable insights into customer satisfaction and improve their products and services accordingly.",
46
+ interpretation = "default",
47
+ examples = [["I was extremely disappointed with this product. The quality was terrible and it broke after only a few days of use. Customer service was unhelpful and unresponsive. I would not recommend this product to anyone.", "This product was great! My family and I found it very useful."]]
48
+ )
49
+
50
+ app.launch()
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ fastai
2
+ gensim
3
+ gradio
4
+ ipywidgets
5
+ jupyter
6
+ nltk
7
+ notebook
8
+ pandas
9
+ plotly
10
+ pytest
11
+ scikit-learn
12
+ seaborn
13
+ setuptools
14
+ simpletransformers
15
+ spacy
16
+ transformers
17
+ wheel