File size: 1,600 Bytes
87188d3
78f2fc1
 
 
e25de72
b20fcd1
78f2fc1
545f3e4
b20fcd1
75cb8fa
87188d3
 
75cb8fa
87188d3
78f2fc1
 
 
 
 
 
 
 
b20fcd1
 
 
78f2fc1
b20fcd1
 
 
 
 
 
 
 
 
 
 
525165a
b20fcd1
 
 
 
 
 
e25de72
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import gradio as gr
import chromadb

# Load a small subset (10,000 rows)
dataset = load_dataset("wiki40b", "en", split="train[:1000]")

# Extract only text
docs = [d["text"] for d in dataset]

print("Loaded dataset with", len(docs), "documents.")

# Load embedding model
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")

# Convert texts to embeddings
embeddings = embed_model.encode(docs, show_progress_bar=True)


# Initialize ChromaDB client
chroma_client = chromadb.PersistentClient(path="./chroma_db")  # Stores data persistently
collection = chroma_client.get_or_create_collection(name="wikipedia_docs")

# Store embeddings in ChromaDB
for i, (doc, embedding) in enumerate(zip(docs, embeddings)):
    collection.add(
        ids=[str(i)],  # Unique ID for each doc
        embeddings=[embedding.tolist()],  # Convert numpy array to list
        documents=[doc]
    )

print("Stored embeddings in ChromaDB!")

# Search function using ChromaDB
def search_wikipedia(query, top_k=3):
    query_embedding = embed_model.encode([query]).tolist()
    results = collection.query(
        query_embeddings=query_embedding, 
        n_results=top_k
    )
    return "\n\n".join(results["documents"][0])  # Return top results

# Gradio Interface
iface = gr.Interface(
    fn=search_wikipedia, 
    inputs="text", 
    outputs="text", 
    title="Wikipedia Search RAG",
    description="Enter a query and retrieve relevant Wikipedia passages."
)

iface.launch()