Wikipedia_RAG / app.py
Kalyani8's picture
Update app.py
e25de72 verified
raw
history blame
1.2 kB
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import gradio as gr
# Load a small subset (10,000 rows)
dataset = load_dataset("wiki40b", "en", split="train[:10000]")
# Extract only text
docs = [d["text"] for d in dataset]
print("Loaded dataset with", len(docs), "documents.")
# Load embedding model
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# Convert texts to embeddings
embeddings = embed_model.encode(docs, show_progress_bar=True)
# Store in FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings))
print("Stored embeddings in FAISS!")
# Search function
def search_wikipedia(query, top_k=3):
query_embedding = embed_model.encode([query])
distances, indices = index.search(np.array(query_embedding), top_k)
results = [docs[i] for i in indices[0]]
return "\n\n".join(results)
# Gradio Interface
iface = gr.Interface(
fn=search_wikipedia,
inputs="text",
outputs="text",
title="Wikipedia Search RAG",
description="Enter a query and retrieve relevant Wikipedia passages."
)
iface.launch()