from datasets import load_dataset from sentence_transformers import SentenceTransformer import faiss import numpy as np # Load a small subset (10,000 rows) dataset = load_dataset("wiki40b", "en", split="train[:10000]") # Extract only text docs = [d["text"] for d in dataset] print("Loaded dataset with", len(docs), "documents.") # Load embedding model embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") # Convert texts to embeddings embeddings = embed_model.encode(docs, show_progress_bar=True) # Store in FAISS index dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(np.array(embeddings)) print("Stored embeddings in FAISS!")