from datasets import load_dataset from sentence_transformers import SentenceTransformer import faiss import numpy as np import gradio as gr # Load a small subset (10,000 rows) dataset = load_dataset("wiki40b", "en", split="train[:10000]") # Extract only text docs = [d["text"] for d in dataset] print("Loaded dataset with", len(docs), "documents.") # Load embedding model embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") # Convert texts to embeddings embeddings = embed_model.encode(docs, show_progress_bar=True) # Store in FAISS index dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(np.array(embeddings)) print("Stored embeddings in FAISS!") # Search function def search_wikipedia(query, top_k=3): query_embedding = embed_model.encode([query]) distances, indices = index.search(np.array(query_embedding), top_k) results = [docs[i] for i in indices[0]] return "\n\n".join(results) # Gradio Interface iface = gr.Interface( fn=search_wikipedia, inputs="text", outputs="text", title="Wikipedia Search RAG", description="Enter a query and retrieve relevant Wikipedia passages." ) iface.launch()