Spaces:
Runtime error
Runtime error
File size: 8,949 Bytes
967d059 21e0900 967d059 21e0900 5e6070e 21e0900 5e6070e 21e0900 5e6070e 21e0900 5e6070e 21e0900 5e6070e 21e0900 5e6070e 21e0900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import streamlit as st
from transformers import (
AutoTokenizer,
XLNetTokenizer
)
import pathlib
import json
st.set_page_config(layout='wide')
st.title("Transformers library For NLP Tasks : Structured by Topics")
st.write("lets start with the architectures of models")
neural_net_models = dict({
'encoder': "responsible for understanding the input text.",
'decoder': "designed to generate new texts answering queries.",
'encoder-decoder': "understand and generate text & have emergent behaviour",
'convolution': "used for image recognition and processing.",
})
model_types = list(neural_net_models.keys())
archs = st.radio("model architectures".capitalize(), model_types)
st.write(f"{archs.capitalize()} are {neural_net_models[archs]}")
domains = dict({
"computer_vision": {
"encoder": ['vit', 'swin', 'segformer', 'beit'],
"decoder": ['imagegpt'],
"encoder-decoder": ['detr'],
"convolution": ['convnext']
},
"nlp": {
"encoder": ["bert", "roberta", "albert", "distillbert",
"deberta", "longformer",],
"decoder": ["gpt-2", "xlnet", "gpt-j", "opt", "bloom"],
"encoder-decoder": ["bart", "pegasus", "t5", ],
},
"audio": {
"encoder": ["wav2vec2", "hubert"],
"encoder-decoder": ["speech2text", "whisper"]
},
"multimodal": {
"encoder": ["visualbert", "vilt", "clip", "owl-vit"],
"encoder-decoder": ["trocr", "donut"]
},
"reinforcement": {
"decoder": ["trajectory transformer", "decision transformer"]
}
})
st.write("Lets look at the Individual domains")
domain_list = list(domains.keys())
doms = st.radio("domains of ai".capitalize(), domain_list)
st.write(domains[doms])
st.write("Now comes the Tokenizers, the Entry Points")
tokenizer_algos = {
"byte_pair": {
"base": ['gpt', 'gpt-2(byte_level)'],
"intro": "https://arxiv.org/abs/1508.07909"
},
"wordpiece":{
"base": ['bert', 'distilbert', 'electra'],
"intro": "https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf"
},
"unigram": {
"base": ['not_used'],
"intro": "https://arxiv.org/pdf/1804.10959.pdf"
},
"sentencepiece":{
"base": ["xlm", "albert", "xlnet", "marian", "t5"],
"intro": "https://arxiv.org/pdf/1808.06226.pdf"
}
}
tokenizer_items = list(tokenizer_algos.keys())
algos = st.radio("tokenizer algos".capitalize(), tokenizer_items)
st.write(tokenizer_algos[algos])
st.write("""We will work on 3 types of tokenizers on a single sentence
to see how their output differs, by first encoding and decoding them too.""")
st.markdown("""### Models in Review:
- gpt2
- bert-base-uncased
- xlm""")
input_sentence = "This is a sample sentence for testing tokenizers"
gpt2_model = "gpt2"
bert_model = "bert-base-uncased"
xlm_model = "xlnet-base-cased"
gpt2_tokenizer = AutoTokenizer.from_pretrained(gpt2_model)
bert_tokenizer = AutoTokenizer.from_pretrained(bert_model)
xlm_tokenizer = XLNetTokenizer.from_pretrained(xlm_model)
st.markdown("#### The input sentence is")
st.write("The Sample Sentence: ", input_sentence)
gpt2_tokenize = gpt2_tokenizer.tokenize(input_sentence)
bert_tokenize = bert_tokenizer.tokenize(input_sentence)
xlm_tokenize = xlm_tokenizer.tokenize(input_sentence)
with st.expander(label="Byte Pair Tokenizer", expanded=False):
st.write("gpt2_tokenize = gpt2_tokenizer.tokenize(input_sentence)")
st.write(gpt2_tokenize)
with st.expander(label="Word Piece Tokenizer", expanded=False):
st.write("bert_tokenize = bert_tokenizer.tokenize(input_sentence)")
st.write(bert_tokenize)
with st.expander(label="SentencePiece Tokenizer", expanded=False):
st.write("xlm_tokenize = xlm_tokenizer.tokenize(input_sentence)")
st.write(xlm_tokenize)
st.markdown("""#### Tokenizer Options:
There are following parameters in Tokenizer object are most used
- padding = 'longest'(True), 'max_length', 'do_not_pad'(False)
- truncation = 'longest_first'(True), 'only_second', 'only_first',
'do_not_truncate'(False)
- max_length = <= model_max_length """)
## Refer to https://huggingface.co/docs/transformers/pad_truncation
gpt2_max_length = gpt2_tokenizer.model_max_length
bert_max_length = bert_tokenizer.model_max_length
xlm_max_length = "Not Speced"
st.markdown("""We also need the model max length, which is the
what the model is configured with.""")
st.write("GPT: ", gpt2_max_length)
st.write("Bert: ", bert_max_length)
st.write("XLM: ", xlm_max_length)
sent1 = "This app is talking about the variety of Tokenizers and their outputs"
sent2 = """Tokenizers do one thing, bring out numbers from text. The better numbers far better
the results"""
st.write("We will be working with the following sentences.")
st.write("Sentence1: ", sent1)
st.write("Sentence2: ", sent2)
st.markdown("#### Tokenization in Action. Using GPT Tokenizer")
st.markdown("""##### Trial-1:
> No parameter provided
> Sentences are given with comma seperation""")
gpt2_encode = gpt2_tokenizer(sent1, sent2)
st.write(gpt2_encode)
st.markdown("""##### Trial-2:
> No parameter provided
> Sentences are made into a List""")
gpt2_encode = gpt2_tokenizer([sent1, sent2])
st.write("gpt2_encode = gpt2_tokenizer([sent1, sent2])")
st.write(gpt2_encode)
# gpt2_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
gpt2_tokenizer.pad_token_id = gpt2_tokenizer.eos_token_id
st.markdown("""##### Trial-3:
> Need to add pad token to tokenizer, if the model doesn't have.
> padding = True
> Sentences are made into a List""")
gpt2_encode = gpt2_tokenizer([sent1, sent2], padding=True)
st.write("gpt2_encode = gpt2_tokenizer([sent1, sent2], padding=True)")
st.write(gpt2_encode)
st.markdown("""##### Trial-4:
> Need to add pad token to tokenizer, if the model doesn't have.
> padding = max_length (requires max_length = int)
> Sentences are made into a List""")
gpt2_encode = gpt2_tokenizer([sent1, sent2],
padding=True,
max_length=15)
st.write("""gpt2_encode = gpt2_tokenizer([sent1, sent2],
padding=True,
max_length=15""")
st.write(gpt2_encode)
st.markdown("""##### Trial-5:
> truncate = True (requires max_length = int)
> Sentences are seperated by a comma
Will see total output of 12 token, 6 per sentence""")
gpt2_encode = gpt2_tokenizer(sent1, sent2,
truncation=True,
max_length=12)
st.write("""gpt2_encode = gpt2_tokenizer(sent1, sent2,
truncation=True,
max_length=12)""")
st.write(gpt2_encode)
st.markdown("""##### Trial-6:
> truncate = True (requires max_length = int)
> Sentences are made into a list
Will have longest first""")
gpt2_encode = gpt2_tokenizer([sent1, sent2],
truncation=True,
max_length=12)
st.write("""gpt2_encode = gpt2_tokenizer([sent1, sent2],
truncation=True,
max_length=12)""")
st.write(gpt2_encode)
st.markdown("""##### Trial-7:
> truncate = only_first
> Sentences are made into a list
Will have only 8 tokens """)
gpt2_encode = gpt2_tokenizer([sent1, sent2],
truncation='only_first',
max_length=8)
st.write("""gpt2_encode = gpt2_tokenizer([sent1, sent2],
truncation='only_first',
max_length=8)""")
st.write(gpt2_encode)
st.markdown("""##### Trial-8:
> truncate = False (only_second, is erroring out)
> Sentences are made into a list
No Truncation, 2 ids list""")
gpt2_encode = gpt2_tokenizer([sent1, sent2],
truncation=False,
max_length=7)
st.write("""gpt2_encode = gpt2_tokenizer([sent1, sent2],
truncation=False,
max_length=7)""")
st.write(gpt2_encode)
curr_dir = pathlib.Path(__file__).parent.resolve()
file_loc = curr_dir / "task_arch.json"
file_loc = file_loc.resolve()
with open(file_loc, 'r') as arch:
data = json.load(arch)
tasks = list(data.keys())
st.markdown("#### Lets dive into the model architectures...")
task = st.radio("The NLP tasks", tasks)
task_data = data[task]
num_models = len(task_data['architectures'])
show_archs = st.slider("How many archs to Show",
min_value=4, max_value=num_models)
pruned_data = {
"architectures": task_data['architectures'][:show_archs],
"AutoModelClass": task_data["AutoModelClass"],
"dataset": task_data["dataset"],
"model_used": task_data["model_used"]
}
st.write(pruned_data) |