File size: 11,632 Bytes
b41a29a a1161f1 6bc9e67 e3c590d 6bc9e67 e3c590d 6bc9e67 e3c590d 6bc9e67 e3c590d 6bc9e67 e3c590d a1161f1 6bc9e67 a1161f1 6bc9e67 a1161f1 6bc9e67 a1161f1 6bc9e67 a1161f1 6bc9e67 a1161f1 6bc9e67 a1161f1 6bc9e67 e3c590d 6bc9e67 e3c590d 6bc9e67 e3c590d 6bc9e67 e3c590d a1161f1 6bc9e67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
---
title: Butterfly Classification Using CNN
emoji: π
colorFrom: gray
colorTo: blue
sdk: gradio
sdk_version: 4.15.0
app_file: app.py
pinned: false
license: mit
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
<a name="readme-top"></a>
<div align="center">
<img src="https://huggingface.co/KameliaZaman/Butterfly-Classification-Using-CNN/resolve/main/assets/logo.png" alt="Logo" width="500" height="500">
<h3 align="center">Butterfly Classification using CNN</h3>
<p align="center">
Butterfly image classification using ResNet50V2
<br />
<a href="https://huggingface.co/spaces/KameliaZaman/Butterfly-Classification-using-CNN">View Demo</a>
</p>
</div>
<!-- TABLE OF CONTENTS -->
<details>
<summary>Table of Contents</summary>
<ol>
<li>
<a href="#about-the-project">About The Project</a>
<ul>
<li><a href="#built-with">Built With</a></li>
</ul>
</li>
<li>
<a href="#getting-started">Getting Started</a>
<ul>
<li><a href="#dependencies">Dependencies</a></li>
<li><a href="#installation">Installation</a></li>
</ul>
</li>
<li><a href="#usage">Usage</a></li>
<li><a href="#contributing">Contributing</a></li>
<li><a href="#license">License</a></li>
<li><a href="#contact">Contact</a></li>
</ol>
</details>
<!-- ABOUT THE PROJECT -->
## About The Project
<img src="https://huggingface.co/KameliaZaman/Butterfly-Classification-Using-CNN/resolve/main/assets/About.png" alt="Logo" width="500" height="500">
The project aims to develop a butterfly image classification system utilizing the ResNet50V2 architecture. The goal is to accurately identify different species of butterflies from images, leveraging the deep learning capabilities of ResNet50V2. This involves training the model on a large dataset of butterfly images, fine-tuning its parameters, and optimizing its performance to achieve high accuracy in classifying various butterfly species. Ultimately, the project seeks to provide a reliable tool for researchers, conservationists, and enthusiasts to easily identify and catalog different butterfly species, aiding in biodiversity studies and conservation efforts.
<p align="right">(<a href="#readme-top">back to top</a>)</p>
### Built With
* [![Python][Python]][Python-url]
* [![TensorFlow][TensorFlow]][TensorFlow-url]
* [![OpenCV][OpenCV]][OpenCV-url]
* [![NumPy][NumPy]][NumPy-url]
* [![Pandas][Pandas]][Pandas-url]
* [![Matplotlib][Matplotlib]][Matplotlib-url]
* [![Plotly][Plotly]][Plotly-url]
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- GETTING STARTED -->
## Getting Started
Please follow these simple steps to setup this project locally.
### Dependencies
Here are the list all libraries, packages and other dependencies that need to be installed to run this project.
For example, this is how you would list them:
* TensorFlow 2.16.1
```sh
conda install -c conda-forge tensorflow
```
* OpenCV 4.9.0
```sh
conda install -c conda-forge opencv
```
* Gradio 4.24.0
```sh
conda install -c conda-forge gradio
```
* NumPy 1.26.4
```sh
conda install -c conda-forge numpy
```
### Alternative: Export Environment
Alternatively, clone the project repository, install it and have all dependencies needed.
```sh
conda env export > requirements.txt
```
Recreate it using:
```sh
conda env create -f requirements.txt
```
### Installation
```sh
# clone project
git clone https://huggingface.co/spaces/KameliaZaman/Butterfly-Classification-using-CNN/tree/main
# go inside the project directory
cd Butterfly-Classification-using-CNN
# install the required packages
pip install -r requirements.txt
# run the gradio app
python app.py
```
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- USAGE EXAMPLES -->
## Usage
#### Dataset
Dataset is from "https://www.kaggle.com/datasets/gpiosenka/butterfly-images40-species" which contains train, test and validation sets for 100 butterfly or moth species.
#### Model Architecture
ResNet50V2 was used to to train the model. Adam optimizer was applied with a learning rate of 0.0001.
<img src="https://huggingface.co/KameliaZaman/Butterfly-Classification-Using-CNN/resolve/main/assets/arch.png" alt="Logo" width="500" height="500">
#### Data Preparation
- The dataset is loaded from a CSV file containing information about the butterflies and moths.
- Image paths are constructed based on the dataset information.
- The dataset is split into training, validation, and test sets.
#### Exploratory Data Analysis (EDA)
- Visualizations are created to explore the distribution of labels in the dataset.
```sh
label_counts = df['labels'].value_counts()[:10]
fig = px.bar(x=label_counts.index,
y=label_counts.values,
color=label_counts.values,
text=label_counts.values,
color_continuous_scale='Blues')
fig.update_layout(
title_text='Top 10 Labels Distribution',
template='plotly_white',
xaxis=dict(
title='Label',
),
yaxis=dict(
title='Count',
)
)
fig.update_traces(marker_line_color='black',
marker_line_width=1.5,
opacity=0.8)
fig.show()
```
<img src="https://huggingface.co/KameliaZaman/Butterfly-Classification-Using-CNN/resolve/main/assets/eda.png" alt="Logo" width="500" height="500">
#### Image Data Generation
- Image data generators are used to augment the training data.
- Training and validation data generators are created.
```sh
train_gen = ImageDataGenerator(horizontal_flip=True, vertical_flip=True, rescale=1/255.)
val_gen = ImageDataGenerator(rescale=1/255.)
BATCH_SIZE = 64
SEED = 56
IMAGE_SIZE = (244, 244)
train_flow_gen = train_gen.flow_from_directory(directory=train_dir,
class_mode='sparse',
batch_size=BATCH_SIZE,
target_size=IMAGE_SIZE,
seed=SEED)
val_flow_gen = val_gen.flow_from_directory(directory=val_dir,
class_mode='sparse',
batch_size=BATCH_SIZE,
target_size=IMAGE_SIZE,
seed=SEED)
```
#### Model Training
- The ResNet50V2-based model is constructed and compiled.
- The model is trained on the augmented training data, and its performance is monitored using validation data.
- Callbacks for reducing learning rate and early stopping are employed during training.
```sh
resnet_model.fit(train_flow_gen, epochs=15,
steps_per_epoch=int(np.ceil(train_df.shape[0]/BATCH_SIZE)),
validation_data=val_flow_gen,
validation_steps=int(np.ceil(val_df.shape[0]/BATCH_SIZE)),
callbacks=[rlr_cb, early_cb])
```
<img src="https://huggingface.co/KameliaZaman/Butterfly-Classification-Using-CNN/resolve/main/assets/train_acc.png" alt="Logo" width="500" height="500">
#### Model Evaluation
- The trained model is evaluated on the test set to measure its accuracy.
<img src="https://huggingface.co/KameliaZaman/Butterfly-Classification-Using-CNN/resolve/main/assets/test_acc.png" alt="Logo" width="500" height="500">
#### Deployment
- Gradio is utilized for deploying the trained model.
- Users can input an image, and the model will predict the butterfly species.
```sh
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
import cv2
model_path = './model_checkpoint_manual_resnet.h5'
model = load_model(model_path)
class_names = ['ADONIS', 'AFRICAN GIANT SWALLOWTAIL', 'AMERICAN SNOOT', 'AN 88', 'APPOLLO', 'ARCIGERA FLOWER MOTH', 'ATALA', 'ATLAS MOTH', 'BANDED ORANGE HELICONIAN', 'BANDED PEACOCK']
def preprocess_image(img):
if isinstance(img, str):
# Load and preprocess the image
img = cv2.imread(img)
img = cv2.resize(img, (224, 224))
img = img / 255.0 # Normalize pixel values
img = np.expand_dims(img, axis=0) # Add batch dimension
elif isinstance(img, np.ndarray):
img = cv2.resize(img, (224, 224))
img = img / 255.0 # Normalize pixel values
img = np.expand_dims(img, axis=0) # Add batch dimension
else:
raise ValueError("Unsupported input type. Please provide a file path or a NumPy array.")
return img
def classify_image(img):
img = preprocess_image(img)
predictions = model.predict(img)
predicted_class = np.argmax(predictions)
predicted_class_name = class_names[predicted_class]
return f"Predicted Class: {predicted_class_name}"
iface = gr.Interface(fn=classify_image,
inputs="image",
outputs="text",
live=True)
iface.launch()
```
<img src="https://huggingface.co/KameliaZaman/Butterfly-Classification-Using-CNN/resolve/main/assets/About.png" alt="Logo" width="500" height="500">
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- CONTRIBUTING -->
## Contributing
Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are **greatly appreciated**.
If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement".
Don't forget to give the project a star! Thanks again!
1. Fork the Project
2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the Branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- LICENSE -->
## License
Distributed under the MIT License. See [MIT License](LICENSE) for more information.
<p align="right">(<a href="#readme-top">back to top</a>)</p>
<!-- CONTACT -->
## Contact
Kamelia Zaman Moon - [email protected]
Project Link: [https://huggingface.co/spaces/KameliaZaman/Butterfly-Classification-using-CNN](https://huggingface.co/spaces/KameliaZaman/Butterfly-Classification-using-CNN/tree/main)
<p align="right">(<a href="#readme-top">back to top</a>)</p>
[Python]: https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54
[Python-url]: https://www.python.org/
[TensorFlow]: https://img.shields.io/badge/TensorFlow-%23FF6F00.svg?style=for-the-badge&logo=TensorFlow&logoColor=white
[TensorFlow-url]: https://tensorflow.org/
[OpenCV]: https://img.shields.io/badge/opencv-%23white.svg?style=for-the-badge&logo=opencv&logoColor=white
[OpenCV-url]: https://opencv.org/
[NumPy]: https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white
[NumPy-url]: https://numpy.org/
[Pandas]: https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white
[Pandas-url]: https://pandas.pydata.org/
[Matplotlib]: https://img.shields.io/badge/Matplotlib-%23ffffff.svg?style=for-the-badge&logo=Matplotlib&logoColor=black
[Matplotlib-url]: https://matplotlib.org/
[Plotly]: https://img.shields.io/badge/Plotly-%233F4F75.svg?style=for-the-badge&logo=plotly&logoColor=white
[Plotly-url]: https://plotly.com/ |