KameliaZaman commited on
Commit
7e58e7e
·
verified ·
1 Parent(s): 6550c6d

Uploaded deployment file

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ from tensorflow.keras.models import load_model
4
+ import numpy as np
5
+ import cv2
6
+
7
+ # Load the trained model
8
+ model_path = 'C:/Users/kamel/Documents/Image Classification/model_checkpoint_manual_effnet.h5'
9
+ model = load_model(model_path)
10
+
11
+ # Define a function to preprocess the input image
12
+ def preprocess_image(img):
13
+ # Check if img is a file path or an image object
14
+ if isinstance(img, str):
15
+ # Load and preprocess the image
16
+ img = cv2.imread(img)
17
+ img = cv2.resize(img, (224, 224))
18
+ img = img / 255.0 # Normalize pixel values
19
+ img = np.expand_dims(img, axis=0) # Add batch dimension
20
+ elif isinstance(img, np.ndarray):
21
+ # If img is already an image array, resize it
22
+ img = cv2.resize(img, (224, 224))
23
+ img = img / 255.0 # Normalize pixel values
24
+ img = np.expand_dims(img, axis=0) # Add batch dimension
25
+ else:
26
+ raise ValueError("Unsupported input type. Please provide a file path or a NumPy array.")
27
+
28
+ return img
29
+
30
+ # Define the classification function
31
+ def classify_image(img):
32
+ # Preprocess the image
33
+ img = preprocess_image(img)
34
+
35
+ # Make predictions
36
+ predictions = model.predict(img)
37
+
38
+ # Get the predicted class label
39
+ predicted_class = np.argmax(predictions)
40
+
41
+ return f"Predicted Class: {predicted_class}"
42
+
43
+ # Create a Gradio interface
44
+ iface = gr.Interface(fn=classify_image,
45
+ inputs="image",
46
+ outputs="text",
47
+ live=True)
48
+
49
+ # Launch the Gradio app
50
+ iface.launch()
51
+
52
+
53
+ # In[ ]:
54
+
55
+
56
+
57
+