KameliaZaman commited on
Commit
e192a14
·
verified ·
1 Parent(s): 65fdfd1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -10
app.py CHANGED
@@ -5,9 +5,11 @@ import numpy as np
5
  import cv2
6
 
7
  # Load the trained model
8
- model_path = './model_checkpoint_manual_effnet.h5'
9
  model = load_model(model_path)
10
 
 
 
11
  # Define a function to preprocess the input image
12
  def preprocess_image(img):
13
  # Check if img is a file path or an image object
@@ -38,7 +40,10 @@ def classify_image(img):
38
  # Get the predicted class label
39
  predicted_class = np.argmax(predictions)
40
 
41
- return f"Predicted Class: {predicted_class}"
 
 
 
42
 
43
  # Create a Gradio interface
44
  iface = gr.Interface(fn=classify_image,
@@ -47,11 +52,4 @@ iface = gr.Interface(fn=classify_image,
47
  live=True)
48
 
49
  # Launch the Gradio app
50
- iface.launch()
51
-
52
-
53
- # In[ ]:
54
-
55
-
56
-
57
-
 
5
  import cv2
6
 
7
  # Load the trained model
8
+ model_path = 'C:/Users/kamel/Documents/Image Classification/model_checkpoint_manual_effnet.h5'
9
  model = load_model(model_path)
10
 
11
+ class_names = ['ADONIS', 'AFRICAN GIANT SWALLOWTAIL', 'AMERICAN SNOOT', 'AN 88', 'APPOLLO', 'ARCIGERA FLOWER MOTH', 'ATALA', 'ATLAS MOTH', 'BANDED ORANGE HELICONIAN', 'BANDED PEACOCK']
12
+
13
  # Define a function to preprocess the input image
14
  def preprocess_image(img):
15
  # Check if img is a file path or an image object
 
40
  # Get the predicted class label
41
  predicted_class = np.argmax(predictions)
42
 
43
+ # Get the predicted class name
44
+ predicted_class_name = class_names[predicted_class]
45
+
46
+ return f"Predicted Class: {predicted_class_name}"
47
 
48
  # Create a Gradio interface
49
  iface = gr.Interface(fn=classify_image,
 
52
  live=True)
53
 
54
  # Launch the Gradio app
55
+ iface.launch()