Spaces:
Runtime error
Runtime error
File size: 11,068 Bytes
6fc87f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
import json
import random
import math
# Define a list of topics with specific formulas and question templates
TOPICS = {
"Average Value": {
"formula": "f_avg = (1/(b-a)) * ∫[a,b] f(x) dx",
"functions": {
"easy": [
{"func": "x^2", "domain": [0, 2], "solution": "4/3"},
{"func": "sin(x)", "domain": [0, "π"], "solution": "2/π"},
{"func": "e^x", "domain": [0, 1], "solution": "(e-1)"},
{"func": "x", "domain": [1, 4], "solution": "5/2"},
{"func": "x^3", "domain": [0, 1], "solution": "1/4"}
],
"hard": [
{"func": "x*sin(x)", "domain": [0, "π"], "solution": "π/2"},
{"func": "ln(x)", "domain": [1, "e"], "solution": "1-1/e"},
{"func": "x^2*e^x", "domain": [0, 1], "solution": "2e-2"},
{"func": "1/(1+x^2)", "domain": [0, 1], "solution": "π/4"},
{"func": "sqrt(x)", "domain": [0, 4], "solution": "4/3"}
]
}
},
"Arc Length": {
"formula": "L = ∫[a,b] sqrt(1 + (f'(x))^2) dx",
"functions": {
"easy": [
{"func": "x^2", "domain": [0, 1], "solution": "approx. 1.4789"},
{"func": "x^(3/2)", "domain": [0, 1], "solution": "approx. 1.1919"},
{"func": "2x+1", "domain": [0, 2], "solution": "sqrt(5)*2"},
{"func": "x^3", "domain": [0, 1], "solution": "approx. 1.0801"},
{"func": "sin(x)", "domain": [0, "π/2"], "solution": "approx. 1.9118"}
],
"hard": [
{"func": "ln(x)", "domain": [1, 3], "solution": "approx. 2.3861"},
{"func": "e^x", "domain": [0, 1], "solution": "approx. 1.1752"},
{"func": "cosh(x)", "domain": [0, 1], "solution": "sinh(1)"},
{"func": "x^2 - ln(x)", "domain": [1, 2], "solution": "approx. 3.1623"},
{"func": "parametric: x=cos(t), y=sin(t) for t∈[0,π]", "domain": [0, "π"], "solution": "π"}
]
}
},
"Surface Area": {
"formula": "S = 2π * ∫[a,b] f(x) * sqrt(1 + (f'(x))^2) dx",
"functions": {
"easy": [
{"func": "x", "domain": [0, 3], "solution": "2π*4.5"},
{"func": "x^2", "domain": [0, 1], "solution": "approx. 2π*0.7169"},
{"func": "sqrt(x)", "domain": [0, 4], "solution": "approx. 2π*4.5177"},
{"func": "1", "domain": [0, 2], "solution": "2π*2"},
{"func": "x/2", "domain": [0, 4], "solution": "2π*4.1231"}
],
"hard": [
{"func": "x^3", "domain": [0, 1], "solution": "approx. 2π*0.6004"},
{"func": "e^x", "domain": [0, 1], "solution": "approx. 2π*1.1793"},
{"func": "sin(x)", "domain": [0, "π/2"], "solution": "approx. 2π*0.6366"},
{"func": "1/x", "domain": [1, 2], "solution": "approx. 2π*1.1478"},
{"func": "ln(x)", "domain": [1, 2], "solution": "approx. 2π*0.5593"}
]
}
},
"Differential Equations": {
"formula": "Various types",
"functions": {
"easy": [
{"func": "dy/dx = 2x", "domain": ["y(0)=1"], "solution": "y = x^2 + 1"},
{"func": "dy/dx = y", "domain": ["y(0)=1"], "solution": "y = e^x"},
{"func": "dy/dx = 3x^2", "domain": ["y(0)=2"], "solution": "y = x^3 + 2"},
{"func": "dy/dx = -y", "domain": ["y(0)=4"], "solution": "y = 4e^(-x)"},
{"func": "dy/dx = x+1", "domain": ["y(0)=-2"], "solution": "y = x^2/2 + x - 2"}
],
"hard": [
{"func": "y'' + 4y = 0", "domain": ["y(0)=1, y'(0)=0"], "solution": "y = cos(2x)"},
{"func": "y'' - y = x", "domain": ["y(0)=0, y'(0)=1"], "solution": "y = e^x/2 - e^(-x)/2 - x"},
{"func": "y' + y = e^x", "domain": ["y(0)=0"], "solution": "y = xe^x"},
{"func": "y'' + 2y' + y = 0", "domain": ["y(0)=1, y'(0)=-1"], "solution": "y = (1-x)e^(-x)"},
{"func": "y'' - 2y' + y = x^2", "domain": ["y(0)=1, y'(0)=1"], "solution": "y = (x^2)/2 + 2x + 1"}
]
}
},
"Area and Volume": {
"formula": "A = ∫[a,b] f(x) dx, V = π * ∫[a,b] [f(x)]^2 dx",
"functions": {
"easy": [
{"func": "f(x) = x^2, find area under the curve", "domain": [0, 3], "solution": "9"},
{"func": "f(x) = sin(x), find area under the curve", "domain": [0, "π"], "solution": "2"},
{"func": "f(x) = 4-x^2, find area under the curve", "domain": [-2, 2], "solution": "16/3"},
{"func": "f(x) = sqrt(x), find volume of revolution around x-axis", "domain": [0, 4], "solution": "16π/3"},
{"func": "f(x) = x, find volume of revolution around x-axis", "domain": [0, 2], "solution": "8π/3"}
],
"hard": [
{"func": "Area between f(x) = x^2 and g(x) = x^3", "domain": [0, 1], "solution": "1/12"},
{"func": "Volume of solid bounded by z = 4-x^2-y^2 and z = 0", "domain": ["x^2+y^2≤4"], "solution": "8π"},
{"func": "Volume of solid formed by rotating region bounded by y = x^2, y = 0, x = 2 around y-axis", "domain": [0, 2], "solution": "8π/5"},
{"func": "Area between f(x) = sin(x) and g(x) = cos(x)", "domain": [0, "π/4"], "solution": "sqrt(2)-1"},
{"func": "Volume of solid formed by rotating region bounded by y = e^x, y = 0, x = 0, x = 1 around x-axis", "domain": [0, 1], "solution": "π(e^2-1)/2"}
]
}
},
"Parametric Curves and Equations": {
"formula": "x = x(t), y = y(t), Arc length = ∫[a,b] sqrt((dx/dt)^2 + (dy/dt)^2) dt",
"functions": {
"easy": [
{"func": "x = t, y = t^2, find dy/dx", "domain": ["t"], "solution": "dy/dx = 2t"},
{"func": "x = cos(t), y = sin(t), find the arc length", "domain": [0, "π/2"], "solution": "π/2"},
{"func": "x = t^2, y = t^3, find dy/dx", "domain": ["t"], "solution": "dy/dx = 3t/2"},
{"func": "x = 2t, y = t^2, find the area under the curve", "domain": [0, 2], "solution": "4/3"},
{"func": "x = t, y = sin(t), find dy/dx", "domain": ["t"], "solution": "dy/dx = cos(t)"}
],
"hard": [
{"func": "x = e^t*cos(t), y = e^t*sin(t), find dy/dx", "domain": ["t"], "solution": "dy/dx = tan(t) + 1"},
{"func": "x = t-sin(t), y = 1-cos(t), find the arc length", "domain": [0, "2π"], "solution": "8"},
{"func": "x = ln(sec(t)), y = tan(t), find dy/dx", "domain": ["t"], "solution": "dy/dx = sec^2(t)"},
{"func": "x = cos^3(t), y = sin^3(t), find the area enclosed", "domain": [0, "2π"], "solution": "3π/8"},
{"func": "x = cos(t)+t*sin(t), y = sin(t)-t*cos(t), find the arc length", "domain": [0, "2π"], "solution": "2π*sqrt(1+4π^2)"}
]
}
}
}
# Function to generate a single question
def generate_question(topic_name, difficulty):
topic_data = TOPICS[topic_name]
formula = topic_data["formula"]
# Select a random function from the available ones for this topic and difficulty
function_data = random.choice(topic_data["functions"][difficulty])
func = function_data["func"]
domain = function_data["domain"]
solution = function_data["solution"]
# Format domain for display
if isinstance(domain, list) and len(domain) == 2:
domain_str = f"[{domain[0]}, {domain[1]}]"
else:
domain_str = str(domain)
# Create question and solution based on difficulty
if difficulty == "easy":
question = f"Find the {topic_name.lower()} of {func} over the domain {domain_str}."
solution_text = f"Step 1: Apply the formula for {topic_name.lower()}: {formula}\n\n"
solution_text += f"Step 2: Substitute f(x) = {func} and evaluate over {domain_str}\n\n"
solution_text += f"Step 3: Solve the resulting integral or calculation\n\n"
solution_text += f"Final Answer: {solution}"
else:
question = f"Compute the {topic_name.lower()} for {func} over {domain_str}."
solution_text = f"Step 1: Apply the formula for {topic_name.lower()}: {formula}\n\n"
solution_text += f"Step 2: For {func}, substitute into the formula and evaluate over {domain_str}\n\n"
solution_text += f"Step 3: This requires advanced integration techniques or careful analysis\n\n"
solution_text += f"Step 4: After simplification and evaluation of the integral\n\n"
solution_text += f"Final Answer: {solution}"
return question, solution_text
# Function to generate multiple questions
def generate_multiple_questions(topic_name, difficulty, count):
questions = []
solutions = []
for _ in range(count):
question, solution = generate_question(topic_name, difficulty)
questions.append(question)
solutions.append(solution)
combined_questions = "\n\n".join([f"{i+1}. {q}" for i, q in enumerate(questions)])
combined_solutions = "\n\n" + "-"*50 + "\n\n".join([f"Solution {i+1}:\n{s}" for i, s in enumerate(solutions)])
return combined_questions, combined_solutions
# Gradio app function
def generate_calculus_questions(topic, difficulty, count):
count = int(count) # Convert to int in case it's a string
questions, solutions = generate_multiple_questions(topic, difficulty, count)
return questions, solutions
# Create the Gradio interface
with gr.Blocks(title="Calculus Question Generator") as demo:
gr.Markdown("# Calculus Question Generator")
gr.Markdown("Select a topic, difficulty level, and the number of questions to generate.")
with gr.Row():
with gr.Column():
topic = gr.Dropdown(
choices=list(TOPICS.keys()),
label="Calculus Topic",
value="Average Value"
)
difficulty = gr.Radio(
choices=["easy", "hard"],
label="Difficulty Level",
value="easy"
)
count = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Number of Questions"
)
generate_button = gr.Button("Generate Questions")
with gr.Column():
questions_output = gr.Textbox(label="Generated Questions", lines=10)
solutions_output = gr.Textbox(label="Solutions", lines=15)
generate_button.click(
generate_calculus_questions,
inputs=[topic, difficulty, count],
outputs=[questions_output, solutions_output]
)
gr.Markdown("### Created by KamogeloMosiai")
# Launch the app
if __name__ == "__main__":
demo.launch() |