Spaces:
Runtime error
Runtime error
File size: 28,433 Bytes
6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 55b48e8 6fc87f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import gradio as gr
import random
import json
import tempfile
import os
from datetime import datetime
# Define a comprehensive list of calculus topics based on James Stewart's textbook
TOPICS = {
"Limits and Continuity": {
"formula": "For a function $f(x)$, $\\lim_{x \\to a} f(x) = L$",
"functions": {
"easy": [
{"func": "$\\lim_{x \\to 2} (3x+4)$", "domain": ["$x \\to 2$"], "solution": "$10$"},
{"func": "$\\lim_{x \\to 0} \\frac{\\sin(x)}{x}$", "domain": ["$x \\to 0$"], "solution": "$1$"},
{"func": "$\\lim_{x \\to 3} (x^2-5x+2)$", "domain": ["$x \\to 3$"], "solution": "$-4$"},
{"func": "$\\lim_{x \\to 1} \\frac{x^2-1}{x-1}$", "domain": ["$x \\to 1$"], "solution": "$2$"},
{"func": "$\\lim_{x \\to \\infty} \\frac{2x^2+3x-5}{x^2}$", "domain": ["$x \\to \\infty$"], "solution": "$2$"}
],
"hard": [
{"func": "$\\lim_{x \\to 0} \\frac{1-\\cos(x)}{x^2}$", "domain": ["$x \\to 0$"], "solution": "$\\frac{1}{2}$"},
{"func": "$\\lim_{x \\to 0} (\\frac{1}{x} - \\frac{1}{\\sin(x)})$", "domain": ["$x \\to 0$"], "solution": "$0$"},
{"func": "$\\lim_{x \\to 0} \\frac{e^x-1-x}{x^2}$", "domain": ["$x \\to 0$"], "solution": "$\\frac{1}{2}$"},
{"func": "$\\lim_{x \\to \\infty} (1 + \\frac{1}{x})^x$", "domain": ["$x \\to \\infty$"], "solution": "$e$"},
{"func": "$\\lim_{x \\to 0^+} x^{\\alpha}\\ln(x)$ where $\\alpha > 0$", "domain": ["$x \\to 0^+$"], "solution": "$0$"}
]
}
},
"Derivatives and Differentiation": {
"formula": "$f'(x) = \\lim_{h \\to 0} \\frac{f(x+h) - f(x)}{h}$",
"functions": {
"easy": [
{"func": "$f(x) = x^3 - 4x^2 + 7x - 2$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = 3x^2 - 8x + 7$"},
{"func": "$f(x) = \\sin(2x)$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = 2\\cos(2x)$"},
{"func": "$f(x) = e^{3x}$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = 3e^{3x}$"},
{"func": "$f(x) = \\ln(x^2 + 1)$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = \\frac{2x}{x^2+1}$"},
{"func": "$f(x) = x^2 e^x$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = x^2 e^x + 2x e^x$"}
],
"hard": [
{"func": "$f(x) = \\frac{\\sin(x)}{\\cos(x) + 2}$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = \\frac{\\cos(x)(\\cos(x) + 2) + \\sin^2(x)}{(\\cos(x) + 2)^2}$"},
{"func": "$f(x) = \\int_{0}^{x^2} \\sin(t^2) dt$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = 2x\\sin(x^4)$"},
{"func": "$f(x) = \\arctan(e^x)$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = \\frac{e^x}{1 + e^{2x}}$"},
{"func": "$f(x) = x^{\\sin(x)}$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = x^{\\sin(x)}(\\cos(x)\\ln(x) + \\frac{\\sin(x)}{x})$"},
{"func": "$f(x) = \\ln(\\sin(x))$", "domain": ["Find $f'(x)$"], "solution": "$f'(x) = \\cot(x)$"}
]
}
},
"Applications of Derivatives": {
"formula": "Related Rates, Optimization, L'Hôpital's Rule",
"functions": {
"easy": [
{"func": "A particle moves according to $s(t) = t^3 - 6t^2 + 9t$. Find its velocity at $t = 2$", "domain": ["$t = 2$"], "solution": "$v(2) = -3$ units/sec"},
{"func": "Find the critical points of $f(x) = x^3 - 3x^2 - 9x + 5$", "domain": ["$x \\in \\mathbb{R}$"], "solution": "$x = -1$ and $x = 3$"},
{"func": "Find the absolute maximum and minimum of $f(x) = x^2 - 4x + 3$ on $[0, 3]$", "domain": ["$[0, 3]$"], "solution": "Maximum: $f(0) = 3$, Minimum: $f(2) = -1$"},
{"func": "Use L'Hôpital's Rule to evaluate $\\lim_{x \\to 0} \\frac{\\tan(3x)}{x}$", "domain": ["$x \\to 0$"], "solution": "$3$"},
{"func": "Find the equation of the tangent line to $f(x) = x^2 + 2x - 3$ at $x = 1$", "domain": ["$x = 1$"], "solution": "$y = 4x - 2$"}
],
"hard": [
{"func": "A ladder 10 feet long leans against a wall. If the bottom slides away at 2 ft/s, how fast is the top sliding down when it's 6 feet above ground?", "domain": ["Rate problem"], "solution": "$\\frac{3}{2}$ ft/s"},
{"func": "Find the dimensions of the rectangle with perimeter 100 m that has the maximum area", "domain": ["Optimization"], "solution": "25 m × 25 m square"},
{"func": "Use Newton's method to approximate a root of $f(x) = x^3 - 2x - 5$ starting with $x_1 = 2$", "domain": ["Newton's Method"], "solution": "$x \\approx 2.0946$ after 3 iterations"},
{"func": "Find the absolute extrema of $f(x) = xe^{-x^2}$ on $[0, \\infty)$", "domain": ["$[0, \\infty)$"], "solution": "Maximum: $f(\\frac{1}{\\sqrt{2}}) = \\frac{1}{\\sqrt{2e}}$, Minimum: $f(0) = f(\\infty) = 0$"},
{"func": "Use implicit differentiation to find $\\frac{dy}{dx}$ for $x^3 + y^3 = 6xy$", "domain": ["Implicit"], "solution": "$\\frac{dy}{dx} = \\frac{6y - 3x^2}{3y^2 - 6x}$"}
]
}
},
"Integration Techniques": {
"formula": "$\\int f(x) dx$ using various methods",
"functions": {
"easy": [
{"func": "$\\int x^3(x^2+1)^4 dx$", "domain": ["Use Substitution"], "solution": "$\\frac{1}{10}(x^2+1)^5 - \\frac{1}{6}(x^2+1)^3 + C$"},
{"func": "$\\int \\frac{1}{x^2-4} dx$", "domain": ["Use Partial Fractions"], "solution": "$\\frac{1}{4}\\ln|\\frac{x-2}{x+2}| + C$"},
{"func": "$\\int x\\sin(x) dx$", "domain": ["Use Integration by Parts"], "solution": "$\\sin(x) - x\\cos(x) + C$"},
{"func": "$\\int \\sec^2(3x) dx$", "domain": ["Trigonometric"], "solution": "$\\frac{1}{3}\\tan(3x) + C$"},
{"func": "$\\int \\frac{5}{3x+6} dx$", "domain": ["Substitution"], "solution": "$\\frac{5}{3}\\ln|3x+6| + C$"}
],
"hard": [
{"func": "$\\int \\frac{x^2}{\\sqrt{1-x^2}} dx$", "domain": ["Trigonometric Substitution"], "solution": "$-\\frac{x\\sqrt{1-x^2}}{2} - \\frac{\\arcsin(x)}{2} + C$"},
{"func": "$\\int \\frac{\\ln(x)}{x^2} dx$", "domain": ["Integration by Parts"], "solution": "$-\\frac{\\ln(x)}{x} - \\frac{1}{x} + C$"},
{"func": "$\\int e^x\\sin(x) dx$", "domain": ["Integration by Parts twice"], "solution": "$\\frac{e^x(\\sin(x)-\\cos(x))}{2} + C$"},
{"func": "$\\int \\frac{1}{x^2-x-6} dx$", "domain": ["Partial Fractions"], "solution": "$\\frac{1}{5}\\ln|\\frac{x+2}{x-3}| + C$"},
{"func": "$\\int \\frac{1}{\\sqrt{x^2-a^2}} dx$", "domain": ["$a > 0$"], "solution": "$\\ln|x + \\sqrt{x^2-a^2}| + C$"}
]
}
},
"Average Value": {
"formula": "$f_{avg} = \\frac{1}{b-a} \\int_{a}^{b} f(x) dx$",
"functions": {
"easy": [
{"func": "$x^2$", "domain": [0, 2], "solution": "$\\frac{4}{3}$"},
{"func": "$\\sin(x)$", "domain": [0, "π"], "solution": "$\\frac{2}{\\pi}$"},
{"func": "$e^x$", "domain": [0, 1], "solution": "$(e-1)$"},
{"func": "$x$", "domain": [1, 4], "solution": "$\\frac{5}{2}$"},
{"func": "$x^3$", "domain": [0, 1], "solution": "$\\frac{1}{4}$"}
],
"hard": [
{"func": "$x\\sin(x)$", "domain": [0, "π"], "solution": "$\\frac{\\pi}{2}$"},
{"func": "$\\ln(x)$", "domain": [1, "e"], "solution": "$1-\\frac{1}{e}$"},
{"func": "$x^2e^x$", "domain": [0, 1], "solution": "$2e-2$"},
{"func": "$\\frac{1}{1+x^2}$", "domain": [0, 1], "solution": "$\\frac{\\pi}{4}$"},
{"func": "$\\sqrt{x}$", "domain": [0, 4], "solution": "$\\frac{4}{3}$"}
]
}
},
"Arc Length": {
"formula": "$L = \\int_{a}^{b} \\sqrt{1 + (f'(x))^2} dx$",
"functions": {
"easy": [
{"func": "$x^2$", "domain": [0, 1], "solution": "$\\approx 1.4789$"},
{"func": "$x^{3/2}$", "domain": [0, 1], "solution": "$\\approx 1.1919$"},
{"func": "$2x+1$", "domain": [0, 2], "solution": "$2\\sqrt{5}$"},
{"func": "$x^3$", "domain": [0, 1], "solution": "$\\approx 1.0801$"},
{"func": "$\\sin(x)$", "domain": [0, "π/2"], "solution": "$\\approx 1.9118$"}
],
"hard": [
{"func": "$\\ln(x)$", "domain": [1, 3], "solution": "$\\approx 2.3861$"},
{"func": "$e^x$", "domain": [0, 1], "solution": "$\\approx 1.1752$"},
{"func": "$\\cosh(x)$", "domain": [0, 1], "solution": "$\\sinh(1)$"},
{"func": "$x^2 - \\ln(x)$", "domain": [1, 2], "solution": "$\\approx 3.1623$"},
{"func": "$x = \\cos(t)$, $y = \\sin(t)$ for $t\\in[0,\\pi]$", "domain": [0, "π"], "solution": "$\\pi$"}
]
}
},
"Surface Area": {
"formula": "$S = 2\\pi \\int_{a}^{b} f(x) \\sqrt{1 + (f'(x))^2} dx$",
"functions": {
"easy": [
{"func": "$x$", "domain": [0, 3], "solution": "$2\\pi \\cdot 4.5$"},
{"func": "$x^2$", "domain": [0, 1], "solution": "$\\approx 2\\pi \\cdot 0.7169$"},
{"func": "$\\sqrt{x}$", "domain": [0, 4], "solution": "$\\approx 2\\pi \\cdot 4.5177$"},
{"func": "$1$", "domain": [0, 2], "solution": "$2\\pi \\cdot 2$"},
{"func": "$\\frac{x}{2}$", "domain": [0, 4], "solution": "$2\\pi \\cdot 4.1231$"}
],
"hard": [
{"func": "$x^3$", "domain": [0, 1], "solution": "$\\approx 2\\pi \\cdot 0.6004$"},
{"func": "$e^x$", "domain": [0, 1], "solution": "$\\approx 2\\pi \\cdot 1.1793$"},
{"func": "$\\sin(x)$", "domain": [0, "π/2"], "solution": "$\\approx 2\\pi \\cdot 0.6366$"},
{"func": "$\\frac{1}{x}$", "domain": [1, 2], "solution": "$\\approx 2\\pi \\cdot 1.1478$"},
{"func": "$\\ln(x)$", "domain": [1, 2], "solution": "$\\approx 2\\pi \\cdot 0.5593$"}
]
}
},
"Differential Equations": {
"formula": "Various types",
"functions": {
"easy": [
{"func": "$\\frac{dy}{dx} = 2x$", "domain": ["$y(0)=1$"], "solution": "$y = x^2 + 1$"},
{"func": "$\\frac{dy}{dx} = y$", "domain": ["$y(0)=1$"], "solution": "$y = e^x$"},
{"func": "$\\frac{dy}{dx} = 3x^2$", "domain": ["$y(0)=2$"], "solution": "$y = x^3 + 2$"},
{"func": "$\\frac{dy}{dx} = -y$", "domain": ["$y(0)=4$"], "solution": "$y = 4e^{-x}$"},
{"func": "$\\frac{dy}{dx} = x+1$", "domain": ["$y(0)=-2$"], "solution": "$y = \\frac{x^2}{2} + x - 2$"}
],
"hard": [
{"func": "$y'' + 4y = 0$", "domain": ["$y(0)=1$, $y'(0)=0$"], "solution": "$y = \\cos(2x)$"},
{"func": "$y'' - y = x$", "domain": ["$y(0)=0$, $y'(0)=1$"], "solution": "$y = \\frac{e^x}{2} - \\frac{e^{-x}}{2} - x$"},
{"func": "$y' + y = e^x$", "domain": ["$y(0)=0$"], "solution": "$y = xe^x$"},
{"func": "$y'' + 2y' + y = 0$", "domain": ["$y(0)=1$, $y'(0)=-1$"], "solution": "$y = (1-x)e^{-x}$"},
{"func": "$y'' - 2y' + y = x^2$", "domain": ["$y(0)=1$, $y'(0)=1$"], "solution": "$y = \\frac{x^2}{2} + 2x + 1$"}
]
}
},
"Area and Volume": {
"formula": "$A = \\int_{a}^{b} f(x) dx$, $V = \\pi \\int_{a}^{b} [f(x)]^2 dx$",
"functions": {
"easy": [
{"func": "$f(x) = x^2$, find area under the curve", "domain": [0, 3], "solution": "$9$"},
{"func": "$f(x) = \\sin(x)$, find area under the curve", "domain": [0, "π"], "solution": "$2$"},
{"func": "$f(x) = 4-x^2$, find area under the curve", "domain": [-2, 2], "solution": "$\\frac{16}{3}$"},
{"func": "$f(x) = \\sqrt{x}$, find volume of revolution around x-axis", "domain": [0, 4], "solution": "$\\frac{16\\pi}{3}$"},
{"func": "$f(x) = x$, find volume of revolution around x-axis", "domain": [0, 2], "solution": "$\\frac{8\\pi}{3}$"}
],
"hard": [
{"func": "Area between $f(x) = x^2$ and $g(x) = x^3$", "domain": [0, 1], "solution": "$\\frac{1}{12}$"},
{"func": "Volume of solid bounded by $z = 4-x^2-y^2$ and $z = 0$", "domain": ["$x^2+y^2\\leq 4$"], "solution": "$8\\pi$"},
{"func": "Volume of solid formed by rotating region bounded by $y = x^2$, $y = 0$, $x = 2$ around y-axis", "domain": [0, 2], "solution": "$\\frac{8\\pi}{5}$"},
{"func": "Area between $f(x) = \\sin(x)$ and $g(x) = \\cos(x)$", "domain": [0, "π/4"], "solution": "$\\sqrt{2}-1$"},
{"func": "Volume of solid formed by rotating region bounded by $y = e^x$, $y = 0$, $x = 0$, $x = 1$ around x-axis", "domain": [0, 1], "solution": "$\\frac{\\pi(e^2-1)}{2}$"}
]
}
},
"Parametric Curves and Equations": {
"formula": "$x = x(t)$, $y = y(t)$, Arc length = $\\int_{a}^{b} \\sqrt{(\\frac{dx}{dt})^2 + (\\frac{dy}{dt})^2} dt$",
"functions": {
"easy": [
{"func": "$x = t$, $y = t^2$, find $\\frac{dy}{dx}$", "domain": ["$t$"], "solution": "$\\frac{dy}{dx} = 2t$"},
{"func": "$x = \\cos(t)$, $y = \\sin(t)$, find the arc length", "domain": [0, "π/2"], "solution": "$\\frac{\\pi}{2}$"},
{"func": "$x = t^2$, $y = t^3$, find $\\frac{dy}{dx}$", "domain": ["$t$"], "solution": "$\\frac{dy}{dx} = \\frac{3t}{2}$"},
{"func": "$x = 2t$, $y = t^2$, find the area under the curve", "domain": [0, 2], "solution": "$\\frac{4}{3}$"},
{"func": "$x = t$, $y = \\sin(t)$, find $\\frac{dy}{dx}$", "domain": ["$t$"], "solution": "$\\frac{dy}{dx} = \\cos(t)$"}
],
"hard": [
{"func": "$x = e^t\\cos(t)$, $y = e^t\\sin(t)$, find $\\frac{dy}{dx}$", "domain": ["$t$"], "solution": "$\\frac{dy}{dx} = \\tan(t) + 1$"},
{"func": "$x = t-\\sin(t)$, $y = 1-\\cos(t)$, find the arc length", "domain": [0, "2π"], "solution": "$8$"},
{"func": "$x = \\ln(\\sec(t))$, $y = \\tan(t)$, find $\\frac{dy}{dx}$", "domain": ["$t$"], "solution": "$\\frac{dy}{dx} = \\sec^2(t)$"},
{"func": "$x = \\cos^3(t)$, $y = \\sin^3(t)$, find the area enclosed", "domain": [0, "2π"], "solution": "$\\frac{3\\pi}{8}$"},
{"func": "$x = \\cos(t)+t\\sin(t)$, $y = \\sin(t)-t\\cos(t)$, find the arc length", "domain": [0, "2π"], "solution": "$2\\pi\\sqrt{1+4\\pi^2}$"}
]
}
},
"Infinite Sequences and Series": {
"formula": "$\\sum_{n=1}^{\\infty} a_n = a_1 + a_2 + a_3 + ...$",
"functions": {
"easy": [
{"func": "Determine if the sequence $a_n = \\frac{n+3}{2n+1}$ converges and find its limit", "domain": ["$n \\to \\infty$"], "solution": "Converges to $\\frac{1}{2}$"},
{"func": "Find the sum of the geometric series $\\sum_{n=0}^{\\infty} \\frac{1}{3^n}$", "domain": ["Geometric Series"], "solution": "$\\frac{3}{2}$"},
{"func": "Determine if the series $\\sum_{n=1}^{\\infty} \\frac{1}{n^2}$ converges", "domain": ["p-series"], "solution": "Converges (p-series with $p=2 > 1$)"},
{"func": "Find the first three non-zero terms in the Taylor series for $f(x) = e^x$ centered at $a = 0$", "domain": ["Taylor Series"], "solution": "$1 + x + \\frac{x^2}{2} + ...$"},
{"func": "Find the radius of convergence of the power series $\\sum_{n=1}^{\\infty} \\frac{x^n}{n}$", "domain": ["Power Series"], "solution": "$R = 1$"}
],
"hard": [
{"func": "Test the convergence of the alternating series $\\sum_{n=1}^{\\infty} (-1)^{n+1}\\frac{\\ln(n)}{n}$", "domain": ["Alternating Series"], "solution": "Converges by the Alternating Series Test"},
{"func": "Find the radius and interval of convergence for $\\sum_{n=1}^{\\infty} \\frac{n^2 x^n}{3^n}$", "domain": ["Power Series"], "solution": "$R = 3$, interval of convergence is $(-3, 3)$"},
{"func": "Determine if the series $\\sum_{n=2}^{\\infty} \\frac{1}{n\\ln(n)}$ converges", "domain": ["Integral Test"], "solution": "Diverges by the Integral Test"},
{"func": "Find the sum of the series $\\sum_{n=1}^{\\infty} \\frac{1}{n(n+1)}$", "domain": ["Telescoping Series"], "solution": "$1$"},
{"func": "Find the Taylor series of $f(x) = \\ln(1+x)$ and its radius of convergence", "domain": ["Taylor Series"], "solution": "$\\sum_{n=1}^{\\infty} \\frac{(-1)^{n+1}x^n}{n}$, $R = 1$"}
]
}
},
"Polar Coordinates": {
"formula": "$x = r\\cos(\\theta)$, $y = r\\sin(\\theta)$, Area = $\\frac{1}{2}\\int_{\\alpha}^{\\beta} r^2 d\\theta$",
"functions": {
"easy": [
{"func": "Convert the Cartesian point $(1, \\sqrt{3})$ to polar coordinates", "domain": ["Conversion"], "solution": "$r = 2$, $\\theta = \\frac{\\pi}{3}$"},
{"func": "Find the area enclosed by the circle $r = 3\\sin(\\theta)$", "domain": ["Polar Area"], "solution": "$\\frac{9\\pi}{2}$"},
{"func": "Convert the polar equation $r = 2$ to Cartesian form", "domain": ["Conversion"], "solution": "$x^2 + y^2 = 4$"},
{"func": "Find the area enclosed by $r = 2\\cos(\\theta)$", "domain": ["Polar Area"], "solution": "$2\\pi$"},
{"func": "Convert the Cartesian equation $x^2 + y^2 = 4y$ to polar form", "domain": ["Conversion"], "solution": "$r = 4\\sin(\\theta)$"}
],
"hard": [
{"func": "Find the area of the region enclosed by the lemniscate $r^2 = 4\\cos(2\\theta)$", "domain": ["Polar Area"], "solution": "$4$"},
{"func": "Find the area of the region inside $r = 1 + \\cos(\\theta)$ and outside $r = 1$", "domain": ["Polar Area"], "solution": "$\\frac{\\pi}{2}$"},
{"func": "Find the points of intersection of the polar curves $r = 1 + \\sin(\\theta)$ and $r = 1 - \\sin(\\theta)$", "domain": ["Polar Curves"], "solution": "$(0, 0)$ and $(1, \\frac{\\pi}{2})$, $(1, \\frac{3\\pi}{2})$"},
{"func": "Find the area of the region enclosed by the cardioid $r = 1 + \\cos(\\theta)$", "domain": ["Polar Area"], "solution": "$\\frac{3\\pi}{2}$"},
{"func": "Find the length of the spiral $r = \\theta$ for $0 \\leq \\theta \\leq 2\\pi$", "domain": ["Polar Arc Length"], "solution": "$\\frac{1}{2}\\sqrt{1+4\\pi^2} + \\frac{1}{2}\\ln(2\\pi + \\sqrt{1+4\\pi^2})$"}
]
}
},
"Vector Calculus": {
"formula": "$\\vec{r}(t) = x(t)\\vec{i} + y(t)\\vec{j} + z(t)\\vec{k}$, $\\vec{v}(t) = \\vec{r}'(t)$, $\\vec{a}(t) = \\vec{v}'(t)$",
"functions": {
"easy": [
{"func": "Find the derivative of the vector function $\\vec{r}(t) = t^2\\vec{i} + \\sin(t)\\vec{j} + e^t\\vec{k}$", "domain": ["Vector Function"], "solution": "$\\vec{r}'(t) = 2t\\vec{i} + \\cos(t)\\vec{j} + e^t\\vec{k}$"},
{"func": "Find the unit tangent vector of $\\vec{r}(t) = \\cos(t)\\vec{i} + \\sin(t)\\vec{j}$ at $t = 0$", "domain": ["$t = 0$"], "solution": "$\\vec{T}(0) = \\vec{j}$"},
{"func": "Calculate $\\nabla f$ where $f(x,y,z) = x^2y + yz^2$", "domain": ["Gradient"], "solution": "$\\nabla f = 2xy\\vec{i} + (x^2 + z^2)\\vec{j} + 2yz\\vec{k}$"},
{"func": "Find the divergence of the vector field $\\vec{F}(x,y,z) = x^2\\vec{i} + 2xy\\vec{j} + yz\\vec{k}$", "domain": ["Divergence"], "solution": "$\\nabla \\cdot \\vec{F} = 2x + 2x + z = 4x + z$"},
{"func": "Find the curl of $\\vec{F}(x,y,z) = y\\vec{i} + z\\vec{j} + x\\vec{k}$", "domain": ["Curl"], "solution": "$\\nabla \\times \\vec{F} = (1-0)\\vec{i} + (1-0)\\vec{j} + (1-0)\\vec{k} = \\vec{i} + \\vec{j} + \\vec{k}$"}
],
"hard": [
{"func": "Find the curvature of $\\vec{r}(t) = t\\vec{i} + t^2\\vec{j} + t^3\\vec{k}$ at $t = 1$", "domain": ["Curvature at $t = 1$"], "solution": "$\\kappa = \\frac{2\\sqrt{37}}{49\\sqrt{3}}$"},
{"func": "Verify Stokes' Theorem for $\\vec{F} = x^2\\vec{i} + xy\\vec{j} + z^2\\vec{k}$ on the hemisphere $z = \\sqrt{1-x^2-y^2}$, $z \\geq 0$", "domain": ["Stokes' Theorem"], "solution": "Both integrals equal $\\frac{\\pi}{2}$"},
{"func": "Use the Divergence Theorem to evaluate $\\iint_S \\vec{F} \\cdot \\vec{n} \\, dS$ where $\\vec{F}(x,y,z) = x\\vec{i} + y\\vec{j} + z\\vec{k}$ and $S$ is the sphere $x^2+y^2+z^2=4$", "domain": ["Divergence Theorem"], "solution": "$\\iint_S \\vec{F} \\cdot \\vec{n} \\, dS = \\iiint_V 3 \\, dV = 3 \\cdot \\frac{4}{3}\\pi \\cdot 4^{3/2} = 16\\pi$"},
{"func": "Find the potential function $f$ for the conservative vector field $\\vec{F} = (2x+y)\\vec{i} + (x+2z)\\vec{j} + (2y)\\vec{k}$", "domain": ["Potential Function"], "solution": "$f(x,y,z) = x^2 + xy + 2yz + C$"},
{"func": "Use Green's Theorem to evaluate $\\oint_C (y^2\\,dx + x^2\\,dy)$ where $C$ is the boundary of the region enclosed by $y = x^2$ and $y = 4$", "domain": ["Green's Theorem"], "solution": "$\\frac{256}{15}$"}
]
}
},
"Partial Derivatives and Multiple Integrals": {
"formula": "$\\frac{\\partial f}{\\partial x}$, $\\frac{\\partial f}{\\partial y}$, $\\iint_D f(x,y) \\, dA$, $\\iiint_E f(x,y,z) \\, dV$",
"functions": {
"easy": [
{"func": "Find $\\frac{\\partial z}{\\partial x}$ and $\\frac{\\partial z}{\\partial y}$ for $z = x^2 + 3xy - y^3$", "domain": ["Partial Derivatives"], "solution": "$\\frac{\\partial z}{\\partial x} = 2x + 3y$, $\\frac{\\partial z}{\\partial y} = 3x - 3y^2$"},
{"func": "Evaluate $\\iint_D (x + y) \\, dA$ where $D = \\{(x, y) | 0 \\leq x \\leq 1, 0 \\leq y \\leq 2\\}$", "domain": ["Double Integral"], "solution": "$3$"},
{"func": "Find all critical points of $f(x,y) = x^2 + y^2 - 4x - 6y + 12$", "domain": ["Critical Points"], "solution": "$(2, 3)$"},
{"func": "Convert the double integral $\\iint_D x^2y \\, dA$ to polar coordinates where $D$ is the disc $x^2 + y^2 \\leq 4$", "domain": ["Change to Polar"], "solution": "$\\int_0^{2\\pi} \\int_0^2 r^3 \\cos^2(\\theta)\\sin(\\theta) \\, dr \\, d\\theta$"},
{"func": "Evaluate $\\iint_D xy \\, dA$ where $D$ is the triangle with vertices $(0,0)$, $(1,0)$, and $(0,1)$", "domain": ["Double Integral"], "solution": "$\\frac{1}{24}$"}
],
"hard": [
{"func": "Find the absolute maximum and minimum values of $f(x,y) = 2x^2 + y^2 - 4x + 6y + 10$ on the closed disc $x^2 + y^2 \\leq 25$", "domain": ["Extrema on Region"], "solution": "Maximum: $135$ at $(5,0)$, Minimum: $1$ at $(1,-3)$"},
{"func": "Evaluate $\\iiint_E xy^2z^3 \\, dV$ where $E$ is the solid bounded by $x=0$, $y=0$, $z=0$, $x+y+z=1$", "domain": ["Triple Integral"], "solution": "$\\frac{1}{840}$"},
{"func": "Use Lagrange multipliers to find the maximum value of $f(x,y) = xy$ subject to the constraint $x^2 + y^2 = 8$", "domain": ["Lagrange Multipliers"], "solution": "$4$ at $(\\pm 2, \\pm 2)$"},
{"func": "Change the order of integration in $\\int_0^1 \\int_y^1 e^{xy} \\, dx \\, dy$", "domain": ["Change of Order"], "solution": "$\\int_0^1 \\int_0^x e^{xy} \\, dy \\, dx$"},
{"func": "Evaluate $\\iint_D \\frac{1}{1+x^2+y^2} \\, dA$ where $D = \\{(x,y) | x^2 + y^2 \\leq 4\\}$", "domain": ["Double Integral"], "solution": "$\\pi\\ln(5)$"}
]
}
}
}
# Function to generate a question for a given topic and difficulty
def generate_question(topic_name, difficulty):
topic_data = TOPICS[topic_name]
formula = topic_data["formula"]
# Select a random function from the available ones for this topic and difficulty
function_data = random.choice(topic_data["functions"][difficulty])
func = function_data["func"]
domain = function_data["domain"]
solution = function_data["solution"]
# Format domain for display
if isinstance(domain, list) and len(domain) == 2:
domain_str = f"[{domain[0]}, {domain[1]}]"
else:
domain_str = str(domain)
# Create question and solution based on difficulty
if difficulty == "easy":
question = f"Find the {topic_name.lower()} of {func} over the domain {domain_str}."
solution_text = f"Step 1: Apply the formula for {topic_name.lower()}: {formula}\n\n"
solution_text += f"Step 2: Substitute $f(x) = {func}$ and evaluate over {domain_str}\n\n"
solution_text += f"Step 3: Solve the resulting integral or calculation\n\n"
solution_text += f"Final Answer: {solution}"
else:
question = f"Compute the {topic_name.lower()} for {func} over {domain_str}."
solution_text = f"Step 1: Apply the formula for {topic_name.lower()}: {formula}\n\n"
solution_text += f"Step 2: For {func}, substitute into the formula and evaluate over {domain_str}\n\n"
solution_text += f"Step 3: This requires advanced integration techniques or careful analysis\n\n"
solution_text += f"Final Answer: {solution}"
return {
"topic": topic_name,
"difficulty": difficulty,
"question": question,
"solution": solution_text
}
# Store the latest generated questions
latest_questions = []
# Generate questions function for Gradio
def generate_calculus_questions(topic, difficulty, count):
global latest_questions
latest_questions = []
for _ in range(int(count)):
question_data = generate_question(topic, difficulty)
latest_questions.append(question_data)
# Format the output for display
result = ""
for i, q in enumerate(latest_questions):
result += f"Question {i+1}: {q['question']}\n\n"
result += f"Solution {i+1}: {q['solution']}\n\n"
result += "-" * 40 + "\n\n"
return result
# Function to export questions to JSON
def export_to_json():
if not latest_questions:
return None
# Create a JSON file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
json_data = {
"generated_at": timestamp,
"questions": latest_questions
}
# Create a temporary file
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json") as temp_file:
json.dump(json_data, temp_file, indent=2)
temp_file_path = temp_file.name
return temp_file_path
# Create the Gradio interface
with gr.Blocks(title="Math Mento - Calculus Questions Generator") as demo:
gr.Markdown("# Math Mento - Calculus Questions Generator")
gr.Markdown("Generate LaTeX-formatted calculus practice questions with solutions based on James Stewart's calculus textbook")
with gr.Row():
with gr.Column():
topic = gr.Dropdown(
choices=list(TOPICS.keys()),
label="Calculus Topic",
value="Limits and Continuity"
)
difficulty = gr.Radio(
choices=["easy", "hard"],
label="Difficulty",
value="easy"
)
count = gr.Slider(
minimum=1,
maximum=10,
step=1,
value=3,
label="Number of Questions"
)
generate_button = gr.Button("Generate Questions")
export_button = gr.Button("Export to JSON")
with gr.Column():
output = gr.Markdown()
json_file = gr.File(label="Exported JSON")
generate_button.click(
generate_calculus_questions,
inputs=[topic, difficulty, count],
outputs=output
)
export_button.click(
export_to_json,
inputs=[],
outputs=json_file
)
gr.Markdown("### Created by Kamogelo Mosia | Math Mento © 2025")
# Launch the app
if __name__ == "__main__":
demo.launch() |