Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,615 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
from transformers import pipeline
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
|
10 |
+
# Set constants
|
11 |
+
DEFAULT_NUM_QUESTIONS = 3
|
12 |
+
DEFAULT_DIFFICULTY = "Medium"
|
13 |
+
MODEL_GENERATION = "facebook/opt-1.3b" # Free model for question generation
|
14 |
+
MODEL_VERIFICATION = "gpt2-large" # Free model for verification
|
15 |
+
|
16 |
+
# Initialize models (with low memory footprint)
|
17 |
+
try:
|
18 |
+
question_generator = pipeline("text-generation", model=MODEL_GENERATION, max_length=1000)
|
19 |
+
question_verifier = pipeline("text-generation", model=MODEL_VERIFICATION, max_length=300)
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Model loading error: {str(e)}. Will attempt to load on first use.")
|
22 |
+
question_generator = None
|
23 |
+
question_verifier = None
|
24 |
+
|
25 |
+
# Calculus curriculum from James Stewart's textbooks
|
26 |
+
calculus_curriculum = [
|
27 |
+
{
|
28 |
+
"chapter": "1. Functions and Models",
|
29 |
+
"subchapters": [
|
30 |
+
"1.1 Four Ways to Represent a Function",
|
31 |
+
"1.2 Mathematical Models",
|
32 |
+
"1.3 New Functions from Old Functions",
|
33 |
+
"1.4 Exponential Functions",
|
34 |
+
"1.5 Inverse Functions and Logarithms",
|
35 |
+
"1.6 Parametric Curves"
|
36 |
+
],
|
37 |
+
"key_formulas": [
|
38 |
+
"Domain and Range",
|
39 |
+
"Function composition: $(f \\circ g)(x) = f(g(x))$",
|
40 |
+
"Exponential function: $f(x) = a^x$, where $a > 0$",
|
41 |
+
"Natural exponential function: $f(x) = e^x$",
|
42 |
+
"Logarithmic function: $f(x) = \\log_a(x)$, where $a > 0, a \\neq 1$",
|
43 |
+
"Natural logarithm: $f(x) = \\ln(x)$"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"chapter": "2. Limits and Derivatives",
|
48 |
+
"subchapters": [
|
49 |
+
"2.1 The Tangent and Velocity Problems",
|
50 |
+
"2.2 The Limit of a Function",
|
51 |
+
"2.3 Calculating Limits",
|
52 |
+
"2.4 Continuity",
|
53 |
+
"2.5 The Derivative",
|
54 |
+
"2.6 The Derivative as a Function",
|
55 |
+
"2.7 Derivatives of Trigonometric Functions",
|
56 |
+
"2.8 The Chain Rule",
|
57 |
+
"2.9 Implicit Differentiation",
|
58 |
+
"2.10 Related Rates",
|
59 |
+
"2.11 Linear Approximations and Differentials"
|
60 |
+
],
|
61 |
+
"key_formulas": [
|
62 |
+
"Limit Definition: $\\lim_{x \\to a} f(x) = L$",
|
63 |
+
"Derivative Definition: $f'(x) = \\lim_{h \\to 0} \\frac{f(x+h) - f(x)}{h}$",
|
64 |
+
"Power Rule: $\\frac{d}{dx}(x^n) = nx^{n-1}$",
|
65 |
+
"Product Rule: $\\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$",
|
66 |
+
"Quotient Rule: $\\frac{d}{dx}\\left[\\frac{f(x)}{g(x)}\\right] = \\frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$",
|
67 |
+
"Chain Rule: $\\frac{d}{dx}[f(g(x))] = f'(g(x)) \\cdot g'(x)$"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"chapter": "3. Applications of Differentiation",
|
72 |
+
"subchapters": [
|
73 |
+
"3.1 Maximum and Minimum Values",
|
74 |
+
"3.2 The Mean Value Theorem",
|
75 |
+
"3.3 How Derivatives Affect the Shape of a Graph",
|
76 |
+
"3.4 Indeterminate Forms and L'Hospital's Rule",
|
77 |
+
"3.5 Summary of Curve Sketching",
|
78 |
+
"3.6 Optimization Problems",
|
79 |
+
"3.7 Newton's Method",
|
80 |
+
"3.8 Antiderivatives"
|
81 |
+
],
|
82 |
+
"key_formulas": [
|
83 |
+
"Critical Points: $f'(x) = 0$ or $f'(x)$ is undefined",
|
84 |
+
"Mean Value Theorem: If $f$ is continuous on $[a, b]$ and differentiable on $(a, b)$, then there exists a $c$ in $(a, b)$ such that $f'(c) = \\frac{f(b) - f(a)}{b - a}$",
|
85 |
+
"Second Derivative Test: If $f'(c) = 0$ and $f''(c) > 0$, then $f$ has a local minimum at $c$",
|
86 |
+
"L'Hospital's Rule: $\\lim_{x \\to a}\\frac{f(x)}{g(x)} = \\lim_{x \\to a}\\frac{f'(x)}{g'(x)}$",
|
87 |
+
"Newton's Method: $x_{n+1} = x_n - \\frac{f(x_n)}{f'(x_n)}$"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"chapter": "4. Integrals",
|
92 |
+
"subchapters": [
|
93 |
+
"4.1 Areas and Distances",
|
94 |
+
"4.2 The Definite Integral",
|
95 |
+
"4.3 The Fundamental Theorem of Calculus",
|
96 |
+
"4.4 Indefinite Integrals and the Net Change Theorem",
|
97 |
+
"4.5 The Substitution Rule"
|
98 |
+
],
|
99 |
+
"key_formulas": [
|
100 |
+
"Definite Integral: $\\int_a^b f(x)\\,dx = \\lim_{n \\to \\infty} \\sum_{i=1}^{n} f(x_i^*)\\Delta x$",
|
101 |
+
"Fundamental Theorem of Calculus: $\\int_a^b f(x)\\,dx = F(b) - F(a)$ where $F'(x) = f(x)$",
|
102 |
+
"Indefinite Integral: $\\int f(x)\\,dx = F(x) + C$ where $F'(x) = f(x)$",
|
103 |
+
"Power Rule for Integration: $\\int x^n\\,dx = \\frac{x^{n+1}}{n+1} + C$ for $n \\neq -1$",
|
104 |
+
"Substitution Rule: $\\int f(g(x))g'(x)\\,dx = \\int f(u)\\,du$ where $u = g(x)$"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"chapter": "5. Applications of Integration",
|
109 |
+
"subchapters": [
|
110 |
+
"5.1 Areas Between Curves",
|
111 |
+
"5.2 Volumes",
|
112 |
+
"5.3 Volumes by Cylindrical Shells",
|
113 |
+
"5.4 Work",
|
114 |
+
"5.5 Average Value of a Function"
|
115 |
+
],
|
116 |
+
"key_formulas": [
|
117 |
+
"Area Between Curves: $\\int_a^b [f(x) - g(x)]\\,dx$ where $f(x) \\geq g(x)$",
|
118 |
+
"Volume by Disk Method: $V = \\pi\\int_a^b [R(x)]^2\\,dx$",
|
119 |
+
"Volume by Washer Method: $V = \\pi\\int_a^b [(R(x))^2 - (r(x))^2]\\,dx$",
|
120 |
+
"Volume by Cylindrical Shells: $V = 2\\pi\\int_a^b xf(x)\\,dx$ for rotation about y-axis",
|
121 |
+
"Average Value of $f$ on $[a,b]$: $f_{avg} = \\frac{1}{b-a}\\int_a^b f(x)\\,dx$",
|
122 |
+
"Work: $W = \\int_a^b F(x)\\,dx$"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"chapter": "6. Techniques of Integration",
|
127 |
+
"subchapters": [
|
128 |
+
"6.1 Integration by Parts",
|
129 |
+
"6.2 Trigonometric Integrals",
|
130 |
+
"6.3 Trigonometric Substitution",
|
131 |
+
"6.4 Integration of Rational Functions by Partial Fractions",
|
132 |
+
"6.5 Strategy for Integration",
|
133 |
+
"6.6 Approximate Integration",
|
134 |
+
"6.7 Improper Integrals"
|
135 |
+
],
|
136 |
+
"key_formulas": [
|
137 |
+
"Integration by Parts: $\\int u\\,dv = uv - \\int v\\,du$",
|
138 |
+
"Trigonometric Integrals: $\\int \\sin^n x \\cos^m x\\,dx$ (various formulas)",
|
139 |
+
"Trig Substitution: $x = a\\sin\\theta$ for $\\sqrt{a^2-x^2}$, $x = a\\tan\\theta$ for $\\sqrt{a^2+x^2}$",
|
140 |
+
"Partial Fractions: $\\frac{P(x)}{Q(x)} = \\frac{A}{(x-a)} + \\frac{B}{(x-a)^2} + \\frac{Cx+D}{x^2+bx+c} + ...$",
|
141 |
+
"Improper Integrals: $\\int_a^{\\infty} f(x)\\,dx = \\lim_{t \\to \\infty} \\int_a^t f(x)\\,dx$"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"chapter": "7. Differential Equations",
|
146 |
+
"subchapters": [
|
147 |
+
"7.1 Modeling with Differential Equations",
|
148 |
+
"7.2 Direction Fields and Euler's Method",
|
149 |
+
"7.3 Separable Equations",
|
150 |
+
"7.4 Models for Population Growth",
|
151 |
+
"7.5 Linear Equations",
|
152 |
+
"7.6 Predator-Prey Systems"
|
153 |
+
],
|
154 |
+
"key_formulas": [
|
155 |
+
"General form of a first-order differential equation: $\\frac{dy}{dx} = f(x, y)$",
|
156 |
+
"Separable equation: $\\frac{dy}{dx} = g(x)h(y)$ → $\\int \\frac{1}{h(y)}dy = \\int g(x)dx + C$",
|
157 |
+
"First-order linear differential equation: $\\frac{dy}{dx} + P(x)y = Q(x)$",
|
158 |
+
"Integrating factor method: Multiply by $e^{\\int P(x)dx}$",
|
159 |
+
"Euler's Method: $y_{n+1} = y_n + hf(x_n, y_n)$"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"chapter": "8. Infinite Sequences and Series",
|
164 |
+
"subchapters": [
|
165 |
+
"8.1 Sequences",
|
166 |
+
"8.2 Series",
|
167 |
+
"8.3 The Integral Test and Estimates of Sums",
|
168 |
+
"8.4 The Comparison Tests",
|
169 |
+
"8.5 Alternating Series",
|
170 |
+
"8.6 Absolute Convergence and the Ratio and Root Tests",
|
171 |
+
"8.7 Strategy for Testing Series",
|
172 |
+
"8.8 Power Series",
|
173 |
+
"8.9 Representations of Functions as Power Series",
|
174 |
+
"8.10 Taylor and Maclaurin Series"
|
175 |
+
],
|
176 |
+
"key_formulas": [
|
177 |
+
"Geometric Series: $\\sum_{n=0}^{\\infty} ar^n = \\frac{a}{1-r}$ if $|r| < 1$",
|
178 |
+
"Taylor Series: $f(x) = \\sum_{n=0}^{\\infty} \\frac{f^{(n)}(a)}{n!}(x-a)^n$",
|
179 |
+
"Maclaurin Series: $f(x) = \\sum_{n=0}^{\\infty} \\frac{f^{(n)}(0)}{n!}x^n$",
|
180 |
+
"Common Maclaurin Series: $e^x = \\sum_{n=0}^{\\infty} \\frac{x^n}{n!}$, $\\sin(x) = \\sum_{n=0}^{\\infty} \\frac{(-1)^n}{(2n+1)!}x^{2n+1}$",
|
181 |
+
"Ratio Test: $\\lim_{n \\to \\infty} |\\frac{a_{n+1}}{a_n}| < 1$ implies convergence"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"chapter": "9. Parametric Equations and Polar Coordinates",
|
186 |
+
"subchapters": [
|
187 |
+
"9.1 Parametric Curves",
|
188 |
+
"9.2 Calculus with Parametric Curves",
|
189 |
+
"9.3 Polar Coordinates",
|
190 |
+
"9.4 Areas and Lengths in Polar Coordinates",
|
191 |
+
"9.5 Conic Sections"
|
192 |
+
],
|
193 |
+
"key_formulas": [
|
194 |
+
"Parametric curve: $x = f(t)$, $y = g(t)$",
|
195 |
+
"Arc length of parametric curve: $L = \\int_a^b \\sqrt{[f'(t)]^2 + [g'(t)]^2}\\,dt$",
|
196 |
+
"Polar to rectangular coordinates: $x = r\\cos\\theta$, $y = r\\sin\\theta$",
|
197 |
+
"Rectangular to polar coordinates: $r = \\sqrt{x^2 + y^2}$, $\\theta = \\arctan(\\frac{y}{x})$",
|
198 |
+
"Area in polar coordinates: $A = \\frac{1}{2}\\int_{\\alpha}^{\\beta} [r(\\theta)]^2\\,d\\theta$"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"chapter": "10. Vectors and the Geometry of Space",
|
203 |
+
"subchapters": [
|
204 |
+
"10.1 Three-Dimensional Coordinate Systems",
|
205 |
+
"10.2 Vectors",
|
206 |
+
"10.3 The Dot Product",
|
207 |
+
"10.4 The Cross Product",
|
208 |
+
"10.5 Equations of Lines and Planes",
|
209 |
+
"10.6 Cylinders and Quadric Surfaces"
|
210 |
+
],
|
211 |
+
"key_formulas": [
|
212 |
+
"Dot Product: $\\vec{a} \\cdot \\vec{b} = |\\vec{a}||\\vec{b}|\\cos\\theta$",
|
213 |
+
"Cross Product: $\\vec{a} \\times \\vec{b} = |\\vec{a}||\\vec{b}|\\sin\\theta\\,\\vec{n}$",
|
214 |
+
"Equation of a line: $\\vec{r} = \\vec{r_0} + t\\vec{v}$",
|
215 |
+
"Equation of a plane: $\\vec{n} \\cdot (\\vec{r} - \\vec{r_0}) = 0$ or $ax + by + cz + d = 0$",
|
216 |
+
"Distance from point to plane: $d = \\frac{|ax_0 + by_0 + cz_0 + d|}{\\sqrt{a^2 + b^2 + c^2}}$"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"chapter": "11. Vector Functions",
|
221 |
+
"subchapters": [
|
222 |
+
"11.1 Vector Functions and Space Curves",
|
223 |
+
"11.2 Derivatives and Integrals of Vector Functions",
|
224 |
+
"11.3 Arc Length and Curvature",
|
225 |
+
"11.4 Motion in Space: Velocity and Acceleration"
|
226 |
+
],
|
227 |
+
"key_formulas": [
|
228 |
+
"Vector function: $\\vec{r}(t) = x(t)\\vec{i} + y(t)\\vec{j} + z(t)\\vec{k}$",
|
229 |
+
"Derivative of vector function: $\\vec{r}'(t) = x'(t)\\vec{i} + y'(t)\\vec{j} + z'(t)\\vec{k}$",
|
230 |
+
"Arc length: $L = \\int_a^b |\\vec{r}'(t)|\\,dt$",
|
231 |
+
"Unit tangent vector: $\\vec{T}(t) = \\frac{\\vec{r}'(t)}{|\\vec{r}'(t)|}$",
|
232 |
+
"Curvature: $\\kappa = \\frac{|\\vec{T}'(t)|}{|\\vec{r}'(t)|}$",
|
233 |
+
"Acceleration: $\\vec{a}(t) = \\vec{r}''(t)$"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"chapter": "12. Partial Derivatives",
|
238 |
+
"subchapters": [
|
239 |
+
"12.1 Functions of Several Variables",
|
240 |
+
"12.2 Limits and Continuity",
|
241 |
+
"12.3 Partial Derivatives",
|
242 |
+
"12.4 Tangent Planes and Linear Approximations",
|
243 |
+
"12.5 The Chain Rule",
|
244 |
+
"12.6 Directional Derivatives and the Gradient Vector",
|
245 |
+
"12.7 Maximum and Minimum Values",
|
246 |
+
"12.8 Lagrange Multipliers"
|
247 |
+
],
|
248 |
+
"key_formulas": [
|
249 |
+
"Partial derivative: $\\frac{\\partial f}{\\partial x}(x_0, y_0)$",
|
250 |
+
"Gradient: $\\nabla f = \\frac{\\partial f}{\\partial x}\\vec{i} + \\frac{\\partial f}{\\partial y}\\vec{j} + \\frac{\\partial f}{\\partial z}\\vec{k}$",
|
251 |
+
"Directional derivative: $D_\\vec{u}f = \\nabla f \\cdot \\vec{u}$",
|
252 |
+
"Tangent plane: $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$",
|
253 |
+
"Chain Rule: $\\frac{dz}{dt} = \\frac{\\partial z}{\\partial x}\\frac{dx}{dt} + \\frac{\\partial z}{\\partial y}\\frac{dy}{dt}$"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"chapter": "13. Multiple Integrals",
|
258 |
+
"subchapters": [
|
259 |
+
"13.1 Double Integrals over Rectangles",
|
260 |
+
"13.2 Iterated Integrals",
|
261 |
+
"13.3 Double Integrals over General Regions",
|
262 |
+
"13.4 Double Integrals in Polar Coordinates",
|
263 |
+
"13.5 Applications of Double Integrals",
|
264 |
+
"13.6 Triple Integrals",
|
265 |
+
"13.7 Triple Integrals in Cylindrical Coordinates",
|
266 |
+
"13.8 Triple Integrals in Spherical Coordinates",
|
267 |
+
"13.9 Change of Variables in Multiple Integrals"
|
268 |
+
],
|
269 |
+
"key_formulas": [
|
270 |
+
"Double integral: $\\iint_R f(x,y)\\,dA = \\int_a^b \\int_c^d f(x,y)\\,dy\\,dx$",
|
271 |
+
"Area in polar coordinates: $\\iint_R f(r,\\theta)\\,dA = \\int_{\\alpha}^{\\beta} \\int_{h_1(\\theta)}^{h_2(\\theta)} f(r,\\theta)\\,r\\,dr\\,d\\theta$",
|
272 |
+
"Triple integral: $\\iiint_E f(x,y,z)\\,dV$",
|
273 |
+
"Cylindrical coordinates: $\\iiint_E f(x,y,z)\\,dV = \\iiint_E f(r\\cos\\theta, r\\sin\\theta, z)\\,r\\,dr\\,d\\theta\\,dz$",
|
274 |
+
"Spherical coordinates: $\\iiint_E f(x,y,z)\\,dV = \\iiint_E f(\\rho\\sin\\phi\\cos\\theta, \\rho\\sin\\phi\\sin\\theta, \\rho\\cos\\phi)\\,\\rho^2\\sin\\phi\\,d\\rho\\,d\\phi\\,d\\theta$"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"chapter": "14. Vector Calculus",
|
279 |
+
"subchapters": [
|
280 |
+
"14.1 Vector Fields",
|
281 |
+
"14.2 Line Integrals",
|
282 |
+
"14.3 The Fundamental Theorem for Line Integrals",
|
283 |
+
"14.4 Green's Theorem",
|
284 |
+
"14.5 Curl and Divergence",
|
285 |
+
"14.6 Surface Integrals",
|
286 |
+
"14.7 Stokes' Theorem",
|
287 |
+
"14.8 The Divergence Theorem"
|
288 |
+
],
|
289 |
+
"key_formulas": [
|
290 |
+
"Line integral of scalar function: $\\int_C f(x,y,z)\\,ds = \\int_a^b f(\\vec{r}(t))|\\vec{r}'(t)|\\,dt$",
|
291 |
+
"Line integral of vector field: $\\int_C \\vec{F} \\cdot d\\vec{r} = \\int_a^b \\vec{F}(\\vec{r}(t)) \\cdot \\vec{r}'(t)\\,dt$",
|
292 |
+
"Green's Theorem: $\\oint_C (P\\,dx + Q\\,dy) = \\iint_D (\\frac{\\partial Q}{\\partial x} - \\frac{\\partial P}{\\partial y})\\,dA$",
|
293 |
+
"Divergence: $\\text{div}\\,\\vec{F} = \\nabla \\cdot \\vec{F} = \\frac{\\partial P}{\\partial x} + \\frac{\\partial Q}{\\partial y} + \\frac{\\partial R}{\\partial z}$",
|
294 |
+
"Curl: $\\text{curl}\\,\\vec{F} = \\nabla \\times \\vec{F}$",
|
295 |
+
"Stokes' Theorem: $\\int_S (\\nabla \\times \\vec{F}) \\cdot d\\vec{S} = \\oint_C \\vec{F} \\cdot d\\vec{r}$",
|
296 |
+
"Divergence Theorem: $\\iiint_E (\\nabla \\cdot \\vec{F})\\,dV = \\iint_{\\partial E} \\vec{F} \\cdot d\\vec{S}$"
|
297 |
+
]
|
298 |
+
}
|
299 |
+
]
|
300 |
+
|
301 |
+
def load_models_if_needed():
|
302 |
+
"""Ensures models are loaded when needed"""
|
303 |
+
global question_generator, question_verifier
|
304 |
+
|
305 |
+
if question_generator is None:
|
306 |
+
try:
|
307 |
+
question_generator = pipeline("text-generation", model=MODEL_GENERATION, max_length=1000)
|
308 |
+
except Exception as e:
|
309 |
+
return f"Error loading question generator: {str(e)}"
|
310 |
+
|
311 |
+
if question_verifier is None:
|
312 |
+
try:
|
313 |
+
question_verifier = pipeline("text-generation", model=MODEL_VERIFICATION, max_length=300)
|
314 |
+
except Exception as e:
|
315 |
+
return f"Error loading question verifier: {str(e)}"
|
316 |
+
|
317 |
+
return None
|
318 |
+
|
319 |
+
def get_chapter_summary(chapter_idx, subchapter_idx=None):
|
320 |
+
"""Get summary of selected chapter and subchapter"""
|
321 |
+
if chapter_idx < 0 or chapter_idx >= len(calculus_curriculum):
|
322 |
+
return "Invalid chapter selection."
|
323 |
+
|
324 |
+
chapter = calculus_curriculum[chapter_idx]
|
325 |
+
|
326 |
+
if subchapter_idx is None or subchapter_idx < 0 or subchapter_idx >= len(chapter["subchapters"]):
|
327 |
+
# Return chapter summary only
|
328 |
+
summary = f"# {chapter['chapter']}\n\n"
|
329 |
+
summary += "## Key Formulas\n"
|
330 |
+
for formula in chapter.get("key_formulas", []):
|
331 |
+
summary += f"- {formula}\n"
|
332 |
+
return summary
|
333 |
+
|
334 |
+
# Return specific subchapter
|
335 |
+
subchapter = chapter["subchapters"][subchapter_idx]
|
336 |
+
summary = f"# {chapter['chapter']}\n## {subchapter}\n\n"
|
337 |
+
summary += "### Key Formulas\n"
|
338 |
+
for formula in chapter.get("key_formulas", []):
|
339 |
+
summary += f"- {formula}\n"
|
340 |
+
|
341 |
+
return summary
|
342 |
+
|
343 |
+
def generate_question_prompt(chapter, subchapter, difficulty, num_questions=3):
|
344 |
+
"""Generate a prompt for the model to create questions"""
|
345 |
+
prompt = f"""Create {num_questions} university-level mathematics questions about {subchapter} from {chapter} at {difficulty} difficulty.
|
346 |
+
|
347 |
+
For each question:
|
348 |
+
1. Write a clear, university-level calculus problem that requires understanding of the concepts and techniques.
|
349 |
+
2. Include a step-by-step solution showing all work and mathematical reasoning.
|
350 |
+
3. Provide the final answer.
|
351 |
+
|
352 |
+
Format your response exactly as follows:
|
353 |
+
|
354 |
+
## Question 1
|
355 |
+
[Question text]
|
356 |
+
|
357 |
+
### Solution
|
358 |
+
Step 1: [First step of solution]
|
359 |
+
Step 2: [Second step]
|
360 |
+
...
|
361 |
+
|
362 |
+
### Answer
|
363 |
+
[Final answer]
|
364 |
+
|
365 |
+
## Question 2
|
366 |
+
...
|
367 |
+
|
368 |
+
Make sure all mathematics is correct and your solution steps are clear and logical.
|
369 |
+
"""
|
370 |
+
return prompt
|
371 |
+
|
372 |
+
def verify_question(question_text, solution_text):
|
373 |
+
"""Verify if the question and solution are mathematically sound"""
|
374 |
+
error_msg = load_models_if_needed()
|
375 |
+
if error_msg:
|
376 |
+
return False, error_msg
|
377 |
+
|
378 |
+
verification_prompt = f"""Verify if this calculus question and solution are mathematically correct:
|
379 |
+
|
380 |
+
Question: {question_text}
|
381 |
+
|
382 |
+
Solution: {solution_text}
|
383 |
+
|
384 |
+
Is the solution mathematically correct? Answer Yes or No and briefly explain why."""
|
385 |
+
|
386 |
+
try:
|
387 |
+
# Get verification response
|
388 |
+
verification = question_verifier(verification_prompt, max_length=300)[0]['generated_text']
|
389 |
+
|
390 |
+
# Check response for indication that the solution is correct
|
391 |
+
if "yes" in verification.lower() and "incorrect" not in verification.lower() and "error" not in verification.lower():
|
392 |
+
return True, "Verification passed"
|
393 |
+
else:
|
394 |
+
# Extract the explanation for why it's incorrect
|
395 |
+
explanation = verification.split("No")[1] if "No" in verification else "Unable to determine specific issue"
|
396 |
+
return False, f"Verification failed: {explanation}"
|
397 |
+
except Exception as e:
|
398 |
+
return False, f"Error during verification: {str(e)}"
|
399 |
+
|
400 |
+
def generate_questions(chapter_index, subchapter_index, difficulty, num_questions):
|
401 |
+
"""Generate mathematics questions based on chapter/subchapter"""
|
402 |
+
error_msg = load_models_if_needed()
|
403 |
+
if error_msg:
|
404 |
+
return f"## Error Loading Models\n\n{error_msg}\n\nPlease try again later or contact the administrator."
|
405 |
+
|
406 |
+
# Get chapter and subchapter information
|
407 |
+
if chapter_index < 0 or chapter_index >= len(calculus_curriculum):
|
408 |
+
return "Please select a valid chapter."
|
409 |
+
|
410 |
+
chapter = calculus_curriculum[chapter_index]
|
411 |
+
|
412 |
+
if subchapter_index < 0 or subchapter_index >= len(chapter["subchapters"]):
|
413 |
+
return "Please select a valid subchapter."
|
414 |
+
|
415 |
+
subchapter = chapter["subchapters"][subchapter_index]
|
416 |
+
|
417 |
+
# Generate prompt for the model
|
418 |
+
prompt = generate_question_prompt(chapter["chapter"], subchapter, difficulty, num_questions)
|
419 |
+
|
420 |
+
try:
|
421 |
+
# Generate questions
|
422 |
+
result = question_generator(prompt, max_length=1500, do_sample=True,
|
423 |
+
temperature=0.7, top_p=0.85, num_return_sequences=1)[0]['generated_text']
|
424 |
+
|
425 |
+
# Extract generated questions and solutions
|
426 |
+
result = result.replace(prompt, "")
|
427 |
+
|
428 |
+
# Basic formatting fixes
|
429 |
+
result = re.sub(r'#+\s*Question', '## Question', result)
|
430 |
+
result = re.sub(r'#+\s*Solution', '### Solution', result)
|
431 |
+
result = re.sub(r'#+\s*Answer', '### Answer', result)
|
432 |
+
|
433 |
+
# Check if we got properly formatted output
|
434 |
+
if "## Question" not in result:
|
435 |
+
# Fallback to template questions for the topic
|
436 |
+
result = generate_fallback_questions(chapter["chapter"], subchapter, num_questions)
|
437 |
+
|
438 |
+
# Add chapter summary at the top
|
439 |
+
summary = get_chapter_summary(chapter_index, subchapter_index)
|
440 |
+
result = f"{summary}\n\n# Generated Questions\n\n{result}"
|
441 |
+
|
442 |
+
return result
|
443 |
+
|
444 |
+
except Exception as e:
|
445 |
+
return f"Error generating questions: {str(e)}\n\nPlease try again or select a different topic."
|
446 |
+
|
447 |
+
def generate_fallback_questions(chapter, subchapter, num_questions):
|
448 |
+
"""Generate fallback questions when model generation fails"""
|
449 |
+
# Basic templates for different calculus topics
|
450 |
+
if "Limits" in chapter or "Limits" in subchapter:
|
451 |
+
questions = [
|
452 |
+
{
|
453 |
+
"question": "Evaluate the limit: $\\lim_{x \\to 2} \\frac{x^3 - 8}{x - 2}$",
|
454 |
+
"solution": "Step 1: Note that this is an indeterminate form (0/0) when x = 2.\n" +
|
455 |
+
"Step 2: Factor the numerator: $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$\n" +
|
456 |
+
"Step 3: Simplify: $\\lim_{x \\to 2} \\frac{(x - 2)(x^2 + 2x + 4)}{x - 2} = \\lim_{x \\to 2} (x^2 + 2x + 4)$\n" +
|
457 |
+
"Step 4: Evaluate by direct substitution: $2^2 + 2(2) + 4 = 4 + 4 + 4 = 12$",
|
458 |
+
"answer": "12"
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"question": "Find the limit: $\\lim_{x \\to 0} \\frac{\\sin(3x)}{x}$",
|
462 |
+
"solution": "Step 1: Rewrite using the limit property $\\lim_{x \\to 0} \\frac{\\sin x}{x} = 1$\n" +
|
463 |
+
"Step 2: $\\lim_{x \\to 0} \\frac{\\sin(3x)}{x} = \\lim_{x \\to 0} 3 \\cdot \\frac{\\sin(3x)}{3x}$\n" +
|
464 |
+
"Step 3: Apply the limit property: $3 \\cdot \\lim_{x \\to 0} \\frac{\\sin(3x)}{3x} = 3 \\cdot 1 = 3$",
|
465 |
+
"answer": "3"
|
466 |
+
}
|
467 |
+
]
|
468 |
+
elif "Derivative" in chapter or "Derivative" in subchapter:
|
469 |
+
questions = [
|
470 |
+
{
|
471 |
+
"question": "Find the derivative of $f(x) = x^3\\ln(x) - \\frac{x^3}{3}$",
|
472 |
+
"solution": "Step 1: Use the product rule on $x^3\\ln(x)$\n" +
|
473 |
+
"$\\frac{d}{dx}[x^3\\ln(x)] = x^3 \\cdot \\frac{1}{x} + \\ln(x) \\cdot 3x^2$\n" +
|
474 |
+
"$= x^2 + 3x^2\\ln(x)$\n" +
|
475 |
+
"Step 2: Find the derivative of $\\frac{x^3}{3}$\n" +
|
476 |
+
"$\\frac{d}{dx}[\\frac{x^3}{3}] = \\frac{3x^2}{3} = x^2$\n" +
|
477 |
+
"Step 3: Combine the results\n" +
|
478 |
+
"$f'(x) = x^2 + 3x^2\\ln(x) - x^2 = 3x^2\\ln(x)$",
|
479 |
+
"answer": "$f'(x) = 3x^2\\ln(x)$"
|
480 |
+
}
|
481 |
+
]
|
482 |
+
elif "Integration" in chapter or "Integral" in chapter or "Integration" in subchapter or "Integral" in subchapter:
|
483 |
+
questions = [
|
484 |
+
{
|
485 |
+
"question": "Evaluate the integral: $\\int x^2\\ln(x) dx$",
|
486 |
+
"solution": "Step 1: Use integration by parts with $u = \\ln(x)$ and $dv = x^2 dx$\n" +
|
487 |
+
"Then $du = \\frac{1}{x}dx$ and $v = \\frac{x^3}{3}$\n" +
|
488 |
+
"Step 2: Apply the formula $\\int u dv = uv - \\int v du$\n" +
|
489 |
+
"$\\int x^2\\ln(x) dx = \\ln(x) \\cdot \\frac{x^3}{3} - \\int \\frac{x^3}{3} \\cdot \\frac{1}{x} dx$\n" +
|
490 |
+
"$= \\frac{x^3\\ln(x)}{3} - \\frac{1}{3}\\int x^2 dx$\n" +
|
491 |
+
"$= \\frac{x^3\\ln(x)}{3} - \\frac{1}{3} \\cdot \\frac{x^3}{3} + C$\n" +
|
492 |
+
"$= \\frac{x^3\\ln(x)}{3} - \\frac{x^3}{9} + C$",
|
493 |
+
"answer": "$\\frac{x^3\\ln(x)}{3} - \\frac{x^3}{9} + C$"
|
494 |
+
}
|
495 |
+
]
|
496 |
+
else:
|
497 |
+
# Generic calculus questions
|
498 |
+
questions = [
|
499 |
+
{
|
500 |
+
"question": "Find the critical points of $f(x) = x^3 - 6x^2 + 12x + 5$ and determine their nature.",
|
501 |
+
"solution": "Step 1: Find the derivative: $f'(x) = 3x^2 - 12x + 12$\n" +
|
502 |
+
"Step 2: Set $f'(x) = 0$ and solve: $3x^2 - 12x + 12 = 0$\n" +
|
503 |
+
"Step 3: Simplify: $x^2 - 4x + 4 = 0$\n" +
|
504 |
+
"Step 4: Factor: $(x - 2)^2 = 0$\n" +
|
505 |
+
"Step 5: Therefore $x = 2$ is a critical point (with multiplicity 2)\n" +
|
506 |
+
"Step 6: Find the second derivative: $f''(x) = 6x - 12$\n" +
|
507 |
+
"Step 7: Evaluate at $x = 2$: $f''(2) = 6(2) - 12 = 0$\n" +
|
508 |
+
"Step 8: Since $f''(2) = 0$, the second derivative test is inconclusive\n" +
|
509 |
+
"Step 9: Checking $f'(x)$ around $x = 2$:\n" +
|
510 |
+
"For $x < 2$, $f'(x) < 0$ and for $x > 2$, $f'(x) > 0$\n" +
|
511 |
+
"Step 10: Therefore, $x = 2$ is a point of inflection",
|
512 |
+
"answer": "$x = 2$ is a critical point and an inflection point"
|
513 |
+
}
|
514 |
+
]
|
515 |
+
|
516 |
+
# Get a random subset of questions or duplicate if we need more
|
517 |
+
result_questions = []
|
518 |
+
for i in range(num_questions):
|
519 |
+
idx = i % len(questions)
|
520 |
+
q = questions[idx]
|
521 |
+
result_questions.append({
|
522 |
+
"id": i+1,
|
523 |
+
"question": q["question"],
|
524 |
+
"solution": q["solution"],
|
525 |
+
"answer": q["answer"]
|
526 |
+
})
|
527 |
+
|
528 |
+
# Format the output
|
529 |
+
result = ""
|
530 |
+
for q in result_questions:
|
531 |
+
result += f"## Question {q['id']}\n{q['question']}\n\n"
|
532 |
+
result += f"### Solution\n{q['solution']}\n\n"
|
533 |
+
result += f"### Answer\n{q['answer']}\n\n"
|
534 |
+
|
535 |
+
return result
|
536 |
+
|
537 |
+
def on_chapter_change(chapter_index):
|
538 |
+
"""Update subchapter dropdown based on selected chapter"""
|
539 |
+
if chapter_index < 0 or chapter_index >= len(calculus_curriculum):
|
540 |
+
return gr.Dropdown(choices=[], value=None)
|
541 |
+
|
542 |
+
subchapters = calculus_curriculum[chapter_index]["subchapters"]
|
543 |
+
return gr.Dropdown(choices=subchapters, value=subchapters[0] if subchapters else None)
|
544 |
+
|
545 |
+
def create_interface():
|
546 |
+
"""Create the Gradio interface"""
|
547 |
+
# Extract chapter titles for dropdown
|
548 |
+
chapters = [chapter["chapter"] for chapter in calculus_curriculum]
|
549 |
+
|
550 |
+
with gr.Blocks(title="Calculus Question Generator", theme=gr.themes.Soft()) as demo:
|
551 |
+
gr.Markdown("# 🧮 Calculus Question Generator")
|
552 |
+
gr.Markdown("Generate university-level calculus questions with step-by-step solutions.")
|
553 |
+
|
554 |
+
with gr.Row():
|
555 |
+
with gr.Column(scale=2):
|
556 |
+
chapter_dropdown = gr.Dropdown(
|
557 |
+
choices=chapters,
|
558 |
+
value=chapters[0] if chapters else None,
|
559 |
+
label="Chapter",
|
560 |
+
info="Select a chapter from Stewart's Calculus"
|
561 |
+
)
|
562 |
+
|
563 |
+
subchapter_dropdown = gr.Dropdown(
|
564 |
+
choices=calculus_curriculum[0]["subchapters"] if calculus_curriculum else [],
|
565 |
+
value=calculus_curriculum[0]["subchapters"][0] if calculus_curriculum and calculus_curriculum[0]["subchapters"] else None,
|
566 |
+
label="Subchapter",
|
567 |
+
info="Select a specific subchapter"
|
568 |
+
)
|
569 |
+
|
570 |
+
with gr.Row():
|
571 |
+
num_questions = gr.Slider(
|
572 |
+
minimum=1,
|
573 |
+
maximum=5,
|
574 |
+
value=DEFAULT_NUM_QUESTIONS,
|
575 |
+
step=1,
|
576 |
+
label="Number of Questions"
|
577 |
+
)
|
578 |
+
|
579 |
+
difficulty = gr.Dropdown(
|
580 |
+
choices=["Easy", "Medium", "Hard", "Advanced"],
|
581 |
+
value=DEFAULT_DIFFICULTY,
|
582 |
+
label="Difficulty Level"
|
583 |
+
)
|
584 |
+
|
585 |
+
generate_button = gr.Button("Generate Questions", variant="primary")
|
586 |
+
|
587 |
+
output = gr.Markdown(label="Generated Questions & Solutions")
|
588 |
+
|
589 |
+
# Handle chapter selection change
|
590 |
+
chapter_dropdown.change(
|
591 |
+
fn=on_chapter_change,
|
592 |
+
inputs=[chapter_dropdown],
|
593 |
+
outputs=[subchapter_dropdown]
|
594 |
+
)
|
595 |
+
|
596 |
+
# Handle generate button click
|
597 |
+
generate_button.click(
|
598 |
+
fn=generate_questions,
|
599 |
+
inputs=[
|
600 |
+
gr.State(lambda: chapters.index(chapter_dropdown.value) if chapter_dropdown.value in chapters else 0),
|
601 |
+
gr.State(lambda: calculus_curriculum[chapters.index(chapter_dropdown.value) if chapter_dropdown.value in chapters else 0]["subchapters"].index(subchapter_dropdown.value) if subchapter_dropdown.value in calculus_curriculum[chapters.index(chapter_dropdown.value) if chapter_dropdown.value in chapters else 0]["subchapters"] else 0),
|
602 |
+
difficulty,
|
603 |
+
num_questions
|
604 |
+
],
|
605 |
+
outputs=[output]
|
606 |
+
)
|
607 |
+
|
608 |
+
gr.Markdown("---")
|
609 |
+
gr.Markdown("Created by Kamagelo Mosia | Based on James Stewart's Calculus curriculum")
|
610 |
+
|
611 |
+
return demo
|
612 |
+
|
613 |
+
# Create and launch the interface
|
614 |
+
demo = create_interface()
|
615 |
demo.launch()
|