import io import time from pathlib import Path import librosa import numpy as np import soundfile from infer_tools import infer_tool from infer_tools import slicer from infer_tools.infer_tool import Svc from utils.hparams import hparams chunks_dict = infer_tool.read_temp("./infer_tools/new_chunks_temp.json") def run_clip(svc_model, key, acc, use_pe, use_crepe, thre, use_gt_mel, add_noise_step, project_name='', f_name=None, file_path=None, out_path=None, slice_db=-40,**kwargs): print(f'code version:2022-12-04') use_pe = use_pe if hparams['audio_sample_rate'] == 24000 else False if file_path is None: raw_audio_path = f"./raw/{f_name}" clean_name = f_name[:-4] else: raw_audio_path = file_path clean_name = str(Path(file_path).name)[:-4] infer_tool.format_wav(raw_audio_path) wav_path = Path(raw_audio_path).with_suffix('.wav') global chunks_dict audio, sr = librosa.load(wav_path, mono=True,sr=None) wav_hash = infer_tool.get_md5(audio) if wav_hash in chunks_dict.keys(): print("load chunks from temp") chunks = chunks_dict[wav_hash]["chunks"] else: chunks = slicer.cut(wav_path, db_thresh=slice_db) chunks_dict[wav_hash] = {"chunks": chunks, "time": int(time.time())} infer_tool.write_temp("./infer_tools/new_chunks_temp.json", chunks_dict) audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) count = 0 f0_tst = [] f0_pred = [] audio = [] for (slice_tag, data) in audio_data: print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') length = int(np.ceil(len(data) / audio_sr * hparams['audio_sample_rate'])) raw_path = io.BytesIO() soundfile.write(raw_path, data, audio_sr, format="wav") if hparams['debug']: print(np.mean(data), np.var(data)) raw_path.seek(0) if slice_tag: print('jump empty segment') _f0_tst, _f0_pred, _audio = ( np.zeros(int(np.ceil(length / hparams['hop_size']))), np.zeros(int(np.ceil(length / hparams['hop_size']))), np.zeros(length)) else: _f0_tst, _f0_pred, _audio = svc_model.infer(raw_path, key=key, acc=acc, use_pe=use_pe, use_crepe=use_crepe, thre=thre, use_gt_mel=use_gt_mel, add_noise_step=add_noise_step) fix_audio = np.zeros(length) fix_audio[:] = np.mean(_audio) fix_audio[:len(_audio)] = _audio[0 if len(_audio)<len(fix_audio) else len(_audio)-len(fix_audio):] f0_tst.extend(_f0_tst) f0_pred.extend(_f0_pred) audio.extend(list(fix_audio)) count += 1 if out_path is None: out_path = f'./results/{clean_name}_{key}key_{project_name}_{hparams["residual_channels"]}_{hparams["residual_layers"]}_{int(step / 1000)}k_{accelerate}x.{kwargs["format"]}' soundfile.write(out_path, audio, hparams["audio_sample_rate"], 'PCM_16',format=out_path.split('.')[-1]) return np.array(f0_tst), np.array(f0_pred), audio if __name__ == '__main__': # 工程文件夹名,训练时用的那个 project_name = "yilanqiu" model_path = f'./checkpoints/{project_name}/model_ckpt_steps_246000.ckpt' config_path = f'./checkpoints/{project_name}/config.yaml' # 支持多个wav/ogg文件,放在raw文件夹下,带扩展名 file_names = ["青花瓷.wav"] trans = [0] # 音高调整,支持正负(半音),数量与上一行对应,不足的自动按第一个移调参数补齐 # 加速倍数 accelerate = 20 hubert_gpu = True format='flac' step = int(model_path.split("_")[-1].split(".")[0]) # 下面不动 infer_tool.mkdir(["./raw", "./results"]) infer_tool.fill_a_to_b(trans, file_names) model = Svc(project_name, config_path, hubert_gpu, model_path) for f_name, tran in zip(file_names, trans): if "." not in f_name: f_name += ".wav" run_clip(model, key=tran, acc=accelerate, use_crepe=True, thre=0.05, use_pe=True, use_gt_mel=False, add_noise_step=500, f_name=f_name, project_name=project_name, format=format)