File size: 12,257 Bytes
90fc10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7c6cad
ca688b4
73b878e
 
90fc10e
ca688b4
90fc10e
 
e95f4b9
 
 
90fc10e
e95f4b9
 
90fc10e
 
 
 
 
e95f4b9
 
90fc10e
 
 
e95f4b9
90fc10e
 
 
 
 
 
 
 
 
 
e95f4b9
 
 
90fc10e
 
 
e95f4b9
90fc10e
e95f4b9
90fc10e
e95f4b9
90fc10e
 
 
e95f4b9
90fc10e
 
 
 
 
 
 
e95f4b9
a13affa
 
e95f4b9
90fc10e
e95f4b9
90fc10e
 
 
 
 
a13affa
90fc10e
 
 
 
e95f4b9
90fc10e
 
a13affa
e95f4b9
90fc10e
 
e95f4b9
90fc10e
 
 
 
 
 
 
 
 
 
 
a13affa
90fc10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13affa
90fc10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13affa
90fc10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13affa
90fc10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    from functools import wraps
    from flask import (
        Flask,
        jsonify,
        request,
        render_template_string,
        abort,
        send_from_directory,
        send_file,
    )
    from flask_cors import CORS
    import unicodedata
    import markdown
    import time
    import os
    import gc
    import base64
    from io import BytesIO
    from random import randint
    import hashlib
    import chromadb
    import posthog
    import torch
    from chromadb.config import Settings
    from sentence_transformers import SentenceTransformer
    from werkzeug.middleware.proxy_fix import ProxyFix
    from transformers import AutoTokenizer, AutoProcessor, pipeline
    from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM
    from transformers import BlipForConditionalGeneration, GPT2Tokenizer
    from PIL import Image
    import webuiapi
    from colorama import Fore, Style, init as colorama_init




    colorama_init()

    port = 7860
    host = "0.0.0.0"



    args = parser.parse_args()


    summarization_model = (
        "Qiliang/bart-large-cnn-samsum-ChatGPT_v3"
    )
    classification_model = (
        "joeddav/distilbert-base-uncased-go-emotions-student"
    )

    captioning_model = (
        "Salesforce/blip-image-captioning-large"
    )

    print("Initializing an image captioning model...")
    captioning_processor = AutoProcessor.from_pretrained(captioning_model)
    if "blip" in captioning_model:
        captioning_transformer = BlipForConditionalGeneration.from_pretrained(
                captioning_model, torch_dtype=torch_dtype
            ).to(device)
        else:
            captioning_transformer = AutoModelForCausalLM.from_pretrained(
                captioning_model, torch_dtype=torch_dtype
            ).to(device)



    device_string = "cpu"
    device = torch.device(device_string)
    torch_dtype = torch.float32 if device_string == "cpu" else torch.float16

    embedding_model = 'sentence-transformers/all-mpnet-base-v2'

    print("Initializing a text summarization model...")

    summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model)
    summarization_transformer = AutoModelForSeq2SeqLM.from_pretrained(
    summarization_model, torch_dtype=torch_dtype).to(device)

    print("Initializing a sentiment classification pipeline...")
    classification_pipe = pipeline(
            "text-classification",
            model=classification_model,
            top_k=None,
            device=device,
            torch_dtype=torch_dtype,
        )



    print("Initializing ChromaDB")

    # disable chromadb telemetry
    posthog.capture = lambda *args, **kwargs: None
    chromadb_client = chromadb.Client(Settings(anonymized_telemetry=False))
    chromadb_embedder = SentenceTransformer(embedding_model)
    chromadb_embed_fn = chromadb_embedder.encode

    # Flask init
    app = Flask(__name__)
    CORS(app)  # allow cross-domain requests
    app.config["MAX_CONTENT_LENGTH"] = 100 * 1024 * 1024

    app.wsgi_app = ProxyFix(
        app.wsgi_app, x_for=2, x_proto=1, x_host=1, x_prefix=1
    )

    def get_real_ip():
        return request.remote_addr

    def classify_text(text: str) -> list:
        output = classification_pipe(
            text,
            truncation=True,
            max_length=classification_pipe.model.config.max_position_embeddings,
        )[0]
        return sorted(output, key=lambda x: x["score"], reverse=True)

    def caption_image(raw_image: Image, max_new_tokens: int = 20) -> str:
        inputs = captioning_processor(raw_image.convert("RGB"), return_tensors="pt").to(
            device, torch_dtype
        )
        outputs = captioning_transformer.generate(**inputs, max_new_tokens=max_new_tokens)
        caption = captioning_processor.decode(outputs[0], skip_special_tokens=True)
        return caption



    def summarize_chunks(text: str, params: dict) -> str:
        try:
            return summarize(text, params)
        except IndexError:
            print(
                "Sequence length too large for model, cutting text in half and calling again"
            )
            new_params = params.copy()
            new_params["max_length"] = new_params["max_length"] // 2
            new_params["min_length"] = new_params["min_length"] // 2
            return summarize_chunks(
                text[: (len(text) // 2)], new_params
            ) + summarize_chunks(text[(len(text) // 2) :], new_params)


    def summarize(text: str, params: dict) -> str:
        # Tokenize input
        inputs = summarization_tokenizer(text, return_tensors="pt").to(device)
        token_count = len(inputs[0])

        bad_words_ids = [
            summarization_tokenizer(bad_word, add_special_tokens=False).input_ids
            for bad_word in params["bad_words"]
        ]
        summary_ids = summarization_transformer.generate(
            inputs["input_ids"],
            num_beams=2,
            max_new_tokens=max(token_count, int(params["max_length"])),
            min_new_tokens=min(token_count, int(params["min_length"])),
            repetition_penalty=float(params["repetition_penalty"]),
            temperature=float(params["temperature"]),
            length_penalty=float(params["length_penalty"]),
            bad_words_ids=bad_words_ids,
        )
        summary = summarization_tokenizer.batch_decode(
            summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
        )[0]
        summary = normalize_string(summary)
        return summary


    def normalize_string(input: str) -> str:
        output = " ".join(unicodedata.normalize("NFKC", input).strip().split())
        return output

    @app.before_request
    # Request time measuring
    def before_request():
        request.start_time = time.time()


    @app.after_request
    def after_request(response):
        duration = time.time() - request.start_time
        response.headers["X-Request-Duration"] = str(duration)
        return response

    @app.route("/", methods=["GET"])
    def index():
        with open("./README.md", "r", encoding="utf8") as f:
            content = f.read()
        return render_template_string(markdown.markdown(content, extensions=["tables"]))


    @app.route("/api/modules", methods=["GET"])
    def get_modules():
        return jsonify({"modules": ['chromadb','summarize','classify']})

    @app.route("/api/chromadb", methods=["POST"])
    def chromadb_add_messages():
        data = request.get_json()
        if "chat_id" not in data or not isinstance(data["chat_id"], str):
            abort(400, '"chat_id" is required')
        if "messages" not in data or not isinstance(data["messages"], list):
            abort(400, '"messages" is required')

        ip = get_real_ip()
        chat_id_md5 = hashlib.md5(f'{ip}-{data["chat_id"]}'.encode()).hexdigest()
        collection = chromadb_client.get_or_create_collection(
            name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
        )

        documents = [m["content"] for m in data["messages"]]
        ids = [m["id"] for m in data["messages"]]
        metadatas = [
            {"role": m["role"], "date": m["date"], "meta": m.get("meta", "")}
            for m in data["messages"]
        ]

        if len(ids) > 0:
            collection.upsert(
                ids=ids,
                documents=documents,
                metadatas=metadatas,
            )

        return jsonify({"count": len(ids)})


    @app.route("/api/chromadb/query", methods=["POST"])
    def chromadb_query():
        data = request.get_json()
        if "chat_id" not in data or not isinstance(data["chat_id"], str):
            abort(400, '"chat_id" is required')
        if "query" not in data or not isinstance(data["query"], str):
            abort(400, '"query" is required')

        if "n_results" not in data or not isinstance(data["n_results"], int):
            n_results = 1
        else:
            n_results = data["n_results"]

        ip = get_real_ip()
        chat_id_md5 = hashlib.md5(f'{ip}-{data["chat_id"]}'.encode()).hexdigest()
        collection = chromadb_client.get_or_create_collection(
            name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
        )

        n_results = min(collection.count(), n_results)

        messages = []
        if n_results > 0:
            query_result = collection.query(
                query_texts=[data["query"]],
                n_results=n_results,
            )
        
            documents = query_result["documents"][0]
            ids = query_result["ids"][0]
            metadatas = query_result["metadatas"][0]
            distances = query_result["distances"][0]
        
            messages = [
                {
                    "id": ids[i],
                    "date": metadatas[i]["date"],
                    "role": metadatas[i]["role"],
                    "meta": metadatas[i]["meta"],
                    "content": documents[i],
                    "distance": distances[i],
                }
                for i in range(len(ids))
            ]

        return jsonify(messages)
        
    @app.route("/api/chromadb/purge", methods=["POST"])
    def chromadb_purge():
        data = request.get_json()
        if "chat_id" not in data or not isinstance(data["chat_id"], str):
            abort(400, '"chat_id" is required')

        ip = get_real_ip()
        chat_id_md5 = hashlib.md5(f'{ip}-{data["chat_id"]}'.encode()).hexdigest()
        collection = chromadb_client.get_or_create_collection(
            name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
        )

        deleted = collection.delete()
        print("ChromaDB embeddings deleted", len(deleted))

        return 'Ok', 200

    @app.route("/api/caption", methods=["POST"])
    def api_caption():
        data = request.get_json()

        if "image" not in data or not isinstance(data["image"], str):
            abort(400, '"image" is required')

        image = Image.open(BytesIO(base64.b64decode(data["image"])))
        image = image.convert("RGB")
        image.thumbnail((512, 512))
        caption = caption_image(image)
        thumbnail = image_to_base64(image)
        print("Caption:", caption, sep="\n")
        gc.collect()
        return jsonify({"caption": caption, "thumbnail": thumbnail})


    @app.route("/api/summarize", methods=["POST"])
    def api_summarize():
        data = request.get_json()

        if "text" not in data or not isinstance(data["text"], str):
            abort(400, '"text" is required')

        params = {
        "temperature": 1.0,
        "repetition_penalty": 1.0,
        "max_length": 500,
        "min_length": 200,
        "length_penalty": 1.5,
        "bad_words": [
            "\n",
            '"',
            "*",
            "[",
            "]",
            "{",
            "}",
            ":",
            "(",
            ")",
            "<",
            ">",
            "Â",
            "The text ends",
            "The story ends",
            "The text is",
            "The story is",
        ],
    }

        if "params" in data and isinstance(data["params"], dict):
            params.update(data["params"])

        print("Summary input:", data["text"], sep="\n")
        summary = summarize_chunks(data["text"], params)
        print("Summary output:", summary, sep="\n")
        gc.collect()
        return jsonify({"summary": summary})



    @app.route("/api/classify", methods=["POST"])
    def api_classify():
        data = request.get_json()

        if "text" not in data or not isinstance(data["text"], str):
            abort(400, '"text" is required')

        print("Classification input:", data["text"], sep="\n")
        classification = classify_text(data["text"])
        print("Classification output:", classification, sep="\n")
        gc.collect()
        return jsonify({"classification": classification})


    @app.route("/api/classify/labels", methods=["GET"])
    def api_classify_labels():
        classification = classify_text("")
        labels = [x["label"] for x in classification]
        return jsonify({"labels": labels})


    app.run(host=host, port=port)