STExtras / server.py
Salt
Update server.py
a13affa
raw
history blame
9.34 kB
from flask import (
Flask,
jsonify,
request,
render_template_string,
abort,
)
from flask_cors import CORS
import unicodedata
import markdown
import time
import os
import gc
import base64
from io import BytesIO
from random import randint
import hashlib
import chromadb
import posthog
from chromadb.config import Settings
from sentence_transformers import SentenceTransformer
from werkzeug.middleware.proxy_fix import ProxyFix
import argparse
from transformers import AutoTokenizer, AutoProcessor, pipeline
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM
from transformers import BlipForConditionalGeneration, GPT2Tokenizer
from PIL import Image
import webuiapi
from constants import *
from colorama import Fore, Style, init as colorama_init
colorama_init()
parser.add_argument(
"--classification-model", help="Load a custom text classification model"
)
port = 7860
host = "0.0.0.0"
summarization_model = (
args.summarization_model
if args.summarization_model
else DEFAULT_SUMMARIZATION_MODEL
)
classification_model = (
args.classification_model
if args.classification_model
else DEFAULT_CLASSIFICATION_MODEL
)
embedding_model = 'sentence-transformers/all-mpnet-base-v2'
print("Initializing a text summarization model...")
summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model)
summarization_transformer = AutoModelForSeq2SeqLM.from_pretrained(
summarization_model, torch_dtype=torch_dtype).to(device)
print("Initializing a sentiment classification pipeline...")
classification_pipe = pipeline(
"text-classification",
model=classification_model,
top_k=None,
device=device,
torch_dtype=torch_dtype,
)
print("Initializing ChromaDB")
device_string = "cpu"
device = torch.device(device_string)
torch_dtype = torch.float32 if device_string == "cpu" else torch.float16
# disable chromadb telemetry
posthog.capture = lambda *args, **kwargs: None
chromadb_client = chromadb.Client(Settings(anonymized_telemetry=False))
chromadb_embedder = SentenceTransformer(embedding_model)
chromadb_embed_fn = chromadb_embedder.encode
# Flask init
app = Flask(__name__)
CORS(app) # allow cross-domain requests
app.config["MAX_CONTENT_LENGTH"] = 100 * 1024 * 1024
app.wsgi_app = ProxyFix(
app.wsgi_app, x_for=2, x_proto=1, x_host=1, x_prefix=1
)
def get_real_ip():
return request.remote_addr
def classify_text(text: str) -> list:
output = classification_pipe(
text,
truncation=True,
max_length=classification_pipe.model.config.max_position_embeddings,
)[0]
return sorted(output, key=lambda x: x["score"], reverse=True)
def summarize_chunks(text: str, params: dict) -> str:
try:
return summarize(text, params)
except IndexError:
print(
"Sequence length too large for model, cutting text in half and calling again"
)
new_params = params.copy()
new_params["max_length"] = new_params["max_length"] // 2
new_params["min_length"] = new_params["min_length"] // 2
return summarize_chunks(
text[: (len(text) // 2)], new_params
) + summarize_chunks(text[(len(text) // 2) :], new_params)
def summarize(text: str, params: dict) -> str:
# Tokenize input
inputs = summarization_tokenizer(text, return_tensors="pt").to(device)
token_count = len(inputs[0])
bad_words_ids = [
summarization_tokenizer(bad_word, add_special_tokens=False).input_ids
for bad_word in params["bad_words"]
]
summary_ids = summarization_transformer.generate(
inputs["input_ids"],
num_beams=2,
max_new_tokens=max(token_count, int(params["max_length"])),
min_new_tokens=min(token_count, int(params["min_length"])),
repetition_penalty=float(params["repetition_penalty"]),
temperature=float(params["temperature"]),
length_penalty=float(params["length_penalty"]),
bad_words_ids=bad_words_ids,
)
summary = summarization_tokenizer.batch_decode(
summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)[0]
summary = normalize_string(summary)
return summary
def normalize_string(input: str) -> str:
output = " ".join(unicodedata.normalize("NFKC", input).strip().split())
return output
@app.before_request
# Request time measuring
def before_request():
request.start_time = time.time()
@app.after_request
def after_request(response):
duration = time.time() - request.start_time
response.headers["X-Request-Duration"] = str(duration)
return response
@app.route("/", methods=["GET"])
def index():
with open("./README.md", "r", encoding="utf8") as f:
content = f.read()
return render_template_string(markdown.markdown(content, extensions=["tables"]))
@app.route("/api/modules", methods=["GET"])
def get_modules():
return jsonify({"modules": ['chromadb']})
@app.route("/api/chromadb", methods=["POST"])
def chromadb_add_messages():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
if "messages" not in data or not isinstance(data["messages"], list):
abort(400, '"messages" is required')
ip = get_real_ip()
chat_id_md5 = hashlib.md5(f'{ip}-{data["chat_id"]}'.encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
documents = [m["content"] for m in data["messages"]]
ids = [m["id"] for m in data["messages"]]
metadatas = [
{"role": m["role"], "date": m["date"], "meta": m.get("meta", "")}
for m in data["messages"]
]
if len(ids) > 0:
collection.upsert(
ids=ids,
documents=documents,
metadatas=metadatas,
)
return jsonify({"count": len(ids)})
@app.route("/api/chromadb/query", methods=["POST"])
def chromadb_query():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
if "query" not in data or not isinstance(data["query"], str):
abort(400, '"query" is required')
if "n_results" not in data or not isinstance(data["n_results"], int):
n_results = 1
else:
n_results = data["n_results"]
ip = get_real_ip()
chat_id_md5 = hashlib.md5(f'{ip}-{data["chat_id"]}'.encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
n_results = min(collection.count(), n_results)
messages = []
if n_results > 0:
query_result = collection.query(
query_texts=[data["query"]],
n_results=n_results,
)
documents = query_result["documents"][0]
ids = query_result["ids"][0]
metadatas = query_result["metadatas"][0]
distances = query_result["distances"][0]
messages = [
{
"id": ids[i],
"date": metadatas[i]["date"],
"role": metadatas[i]["role"],
"meta": metadatas[i]["meta"],
"content": documents[i],
"distance": distances[i],
}
for i in range(len(ids))
]
return jsonify(messages)
@app.route("/api/chromadb/purge", methods=["POST"])
def chromadb_purge():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
ip = get_real_ip()
chat_id_md5 = hashlib.md5(f'{ip}-{data["chat_id"]}'.encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
deleted = collection.delete()
print("ChromaDB embeddings deleted", len(deleted))
return 'Ok', 200
@app.route("/api/summarize", methods=["POST"])
@require_module("summarize")
def api_summarize():
data = request.get_json()
if "text" not in data or not isinstance(data["text"], str):
abort(400, '"text" is required')
params = DEFAULT_SUMMARIZE_PARAMS.copy()
if "params" in data and isinstance(data["params"], dict):
params.update(data["params"])
print("Summary input:", data["text"], sep="\n")
summary = summarize_chunks(data["text"], params)
print("Summary output:", summary, sep="\n")
gc.collect()
return jsonify({"summary": summary})
@app.route("/api/classify", methods=["POST"])
def api_classify():
data = request.get_json()
if "text" not in data or not isinstance(data["text"], str):
abort(400, '"text" is required')
print("Classification input:", data["text"], sep="\n")
classification = classify_text(data["text"])
print("Classification output:", classification, sep="\n")
gc.collect()
return jsonify({"classification": classification})
@app.route("/api/classify/labels", methods=["GET"])
def api_classify_labels():
classification = classify_text("")
labels = [x["label"] for x in classification]
return jsonify({"labels": labels})
app.run(host=host, port=port)