Spaces:
Running
Running
File size: 12,283 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import pytest
import networkx as nx
from networkx.utils import nodes_equal
from .test_graph import BaseAttrGraphTester, BaseGraphTester
from .test_graph import TestEdgeSubgraph as _TestGraphEdgeSubgraph
from .test_graph import TestGraph as _TestGraph
class BaseDiGraphTester(BaseGraphTester):
def test_has_successor(self):
G = self.K3
assert G.has_successor(0, 1)
assert not G.has_successor(0, -1)
def test_successors(self):
G = self.K3
assert sorted(G.successors(0)) == [1, 2]
with pytest.raises(nx.NetworkXError):
G.successors(-1)
def test_has_predecessor(self):
G = self.K3
assert G.has_predecessor(0, 1)
assert not G.has_predecessor(0, -1)
def test_predecessors(self):
G = self.K3
assert sorted(G.predecessors(0)) == [1, 2]
with pytest.raises(nx.NetworkXError):
G.predecessors(-1)
def test_edges(self):
G = self.K3
assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
assert sorted(G.edges([0, 1])) == [(0, 1), (0, 2), (1, 0), (1, 2)]
with pytest.raises(nx.NetworkXError):
G.edges(-1)
def test_out_edges(self):
G = self.K3
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
with pytest.raises(nx.NetworkXError):
G.out_edges(-1)
def test_out_edges_dir(self):
G = self.P3
assert sorted(G.out_edges()) == [(0, 1), (1, 2)]
assert sorted(G.out_edges(0)) == [(0, 1)]
assert sorted(G.out_edges(2)) == []
def test_out_edges_data(self):
G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
assert sorted(G.out_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
assert sorted(G.out_edges(0, data=True)) == [(0, 1, {"data": 0})]
assert sorted(G.out_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
assert sorted(G.out_edges(0, data="data")) == [(0, 1, 0)]
def test_in_edges_dir(self):
G = self.P3
assert sorted(G.in_edges()) == [(0, 1), (1, 2)]
assert sorted(G.in_edges(0)) == []
assert sorted(G.in_edges(2)) == [(1, 2)]
def test_in_edges_data(self):
G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
assert sorted(G.in_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
assert sorted(G.in_edges(1, data=True)) == [(0, 1, {"data": 0})]
assert sorted(G.in_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
assert sorted(G.in_edges(1, data="data")) == [(0, 1, 0)]
def test_degree(self):
G = self.K3
assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
assert G.degree(0) == 4
assert list(G.degree(iter([0]))) == [(0, 4)] # run through iterator
def test_in_degree(self):
G = self.K3
assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
assert G.in_degree(0) == 2
assert list(G.in_degree(iter([0]))) == [(0, 2)] # run through iterator
def test_out_degree(self):
G = self.K3
assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
assert G.out_degree(0) == 2
assert list(G.out_degree(iter([0]))) == [(0, 2)]
def test_size(self):
G = self.K3
assert G.size() == 6
assert G.number_of_edges() == 6
def test_to_undirected_reciprocal(self):
G = self.Graph()
G.add_edge(1, 2)
assert G.to_undirected().has_edge(1, 2)
assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
G.add_edge(2, 1)
assert G.to_undirected(reciprocal=True).has_edge(1, 2)
def test_reverse_copy(self):
G = nx.DiGraph([(0, 1), (1, 2)])
R = G.reverse()
assert sorted(R.edges()) == [(1, 0), (2, 1)]
R.remove_edge(1, 0)
assert sorted(R.edges()) == [(2, 1)]
assert sorted(G.edges()) == [(0, 1), (1, 2)]
def test_reverse_nocopy(self):
G = nx.DiGraph([(0, 1), (1, 2)])
R = G.reverse(copy=False)
assert sorted(R.edges()) == [(1, 0), (2, 1)]
with pytest.raises(nx.NetworkXError):
R.remove_edge(1, 0)
def test_reverse_hashable(self):
class Foo:
pass
x = Foo()
y = Foo()
G = nx.DiGraph()
G.add_edge(x, y)
assert nodes_equal(G.nodes(), G.reverse().nodes())
assert [(y, x)] == list(G.reverse().edges())
def test_di_cache_reset(self):
G = self.K3.copy()
old_succ = G.succ
assert id(G.succ) == id(old_succ)
old_adj = G.adj
assert id(G.adj) == id(old_adj)
G._succ = {}
assert id(G.succ) != id(old_succ)
assert id(G.adj) != id(old_adj)
old_pred = G.pred
assert id(G.pred) == id(old_pred)
G._pred = {}
assert id(G.pred) != id(old_pred)
def test_di_attributes_cached(self):
G = self.K3.copy()
assert id(G.in_edges) == id(G.in_edges)
assert id(G.out_edges) == id(G.out_edges)
assert id(G.in_degree) == id(G.in_degree)
assert id(G.out_degree) == id(G.out_degree)
assert id(G.succ) == id(G.succ)
assert id(G.pred) == id(G.pred)
class BaseAttrDiGraphTester(BaseDiGraphTester, BaseAttrGraphTester):
def test_edges_data(self):
G = self.K3
all_edges = [
(0, 1, {}),
(0, 2, {}),
(1, 0, {}),
(1, 2, {}),
(2, 0, {}),
(2, 1, {}),
]
assert sorted(G.edges(data=True)) == all_edges
assert sorted(G.edges(0, data=True)) == all_edges[:2]
assert sorted(G.edges([0, 1], data=True)) == all_edges[:4]
with pytest.raises(nx.NetworkXError):
G.edges(-1, True)
def test_in_degree_weighted(self):
G = self.K3.copy()
G.add_edge(0, 1, weight=0.3, other=1.2)
assert sorted(G.in_degree(weight="weight")) == [(0, 2), (1, 1.3), (2, 2)]
assert dict(G.in_degree(weight="weight")) == {0: 2, 1: 1.3, 2: 2}
assert G.in_degree(1, weight="weight") == 1.3
assert sorted(G.in_degree(weight="other")) == [(0, 2), (1, 2.2), (2, 2)]
assert dict(G.in_degree(weight="other")) == {0: 2, 1: 2.2, 2: 2}
assert G.in_degree(1, weight="other") == 2.2
assert list(G.in_degree(iter([1]), weight="other")) == [(1, 2.2)]
def test_out_degree_weighted(self):
G = self.K3.copy()
G.add_edge(0, 1, weight=0.3, other=1.2)
assert sorted(G.out_degree(weight="weight")) == [(0, 1.3), (1, 2), (2, 2)]
assert dict(G.out_degree(weight="weight")) == {0: 1.3, 1: 2, 2: 2}
assert G.out_degree(0, weight="weight") == 1.3
assert sorted(G.out_degree(weight="other")) == [(0, 2.2), (1, 2), (2, 2)]
assert dict(G.out_degree(weight="other")) == {0: 2.2, 1: 2, 2: 2}
assert G.out_degree(0, weight="other") == 2.2
assert list(G.out_degree(iter([0]), weight="other")) == [(0, 2.2)]
class TestDiGraph(BaseAttrDiGraphTester, _TestGraph):
"""Tests specific to dict-of-dict-of-dict digraph data structure"""
def setup_method(self):
self.Graph = nx.DiGraph
# build dict-of-dict-of-dict K3
ed1, ed2, ed3, ed4, ed5, ed6 = ({}, {}, {}, {}, {}, {})
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}}
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._succ = self.k3adj # K3._adj is synced with K3._succ
self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}}
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
ed1, ed2 = ({}, {})
self.P3 = self.Graph()
self.P3._succ = {0: {1: ed1}, 1: {2: ed2}, 2: {}}
self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}}
# P3._adj is synced with P3._succ
self.P3._node = {}
self.P3._node[0] = {}
self.P3._node[1] = {}
self.P3._node[2] = {}
def test_data_input(self):
G = self.Graph({1: [2], 2: [1]}, name="test")
assert G.name == "test"
assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]
assert sorted(G.succ.items()) == [(1, {2: {}}), (2, {1: {}})]
assert sorted(G.pred.items()) == [(1, {2: {}}), (2, {1: {}})]
def test_add_edge(self):
G = self.Graph()
G.add_edge(0, 1)
assert G.adj == {0: {1: {}}, 1: {}}
assert G.succ == {0: {1: {}}, 1: {}}
assert G.pred == {0: {}, 1: {0: {}}}
G = self.Graph()
G.add_edge(*(0, 1))
assert G.adj == {0: {1: {}}, 1: {}}
assert G.succ == {0: {1: {}}, 1: {}}
assert G.pred == {0: {}, 1: {0: {}}}
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edge(None, 3)
def test_add_edges_from(self):
G = self.Graph()
G.add_edges_from([(0, 1), (0, 2, {"data": 3})], data=2)
assert G.adj == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
assert G.succ == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
assert G.pred == {0: {}, 1: {0: {"data": 2}}, 2: {0: {"data": 3}}}
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0,)]) # too few in tuple
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0, 1, 2, 3)]) # too many in tuple
with pytest.raises(TypeError):
G.add_edges_from([0]) # not a tuple
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edges_from([(None, 3), (3, 2)])
def test_remove_edge(self):
G = self.K3.copy()
G.remove_edge(0, 1)
assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
with pytest.raises(nx.NetworkXError):
G.remove_edge(-1, 0)
def test_remove_edges_from(self):
G = self.K3.copy()
G.remove_edges_from([(0, 1)])
assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
G.remove_edges_from([(0, 0)]) # silent fail
def test_clear(self):
G = self.K3
G.graph["name"] = "K3"
G.clear()
assert list(G.nodes) == []
assert G.succ == {}
assert G.pred == {}
assert G.graph == {}
def test_clear_edges(self):
G = self.K3
G.graph["name"] = "K3"
nodes = list(G.nodes)
G.clear_edges()
assert list(G.nodes) == nodes
expected = {0: {}, 1: {}, 2: {}}
assert G.succ == expected
assert G.pred == expected
assert list(G.edges) == []
assert G.graph["name"] == "K3"
class TestEdgeSubgraph(_TestGraphEdgeSubgraph):
"""Unit tests for the :meth:`DiGraph.edge_subgraph` method."""
def setup_method(self):
# Create a doubly-linked path graph on five nodes.
G = nx.DiGraph(nx.path_graph(5))
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.edges[0, 1]["name"] = "edge01"
G.edges[3, 4]["name"] = "edge34"
G.graph["name"] = "graph"
# Get the subgraph induced by the first and last edges.
self.G = G
self.H = G.edge_subgraph([(0, 1), (3, 4)])
def test_pred_succ(self):
"""Test that nodes are added to predecessors and successors.
For more information, see GitHub issue #2370.
"""
G = nx.DiGraph()
G.add_edge(0, 1)
H = G.edge_subgraph([(0, 1)])
assert list(H.predecessors(0)) == []
assert list(H.successors(0)) == [1]
assert list(H.predecessors(1)) == [0]
assert list(H.successors(1)) == []
|