Spaces:
Running
Running
File size: 30,913 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
import gc
import pickle
import platform
import weakref
import pytest
import networkx as nx
from networkx.utils import edges_equal, graphs_equal, nodes_equal
class BaseGraphTester:
"""Tests for data-structure independent graph class features."""
def test_contains(self):
G = self.K3
assert 1 in G
assert 4 not in G
assert "b" not in G
assert [] not in G # no exception for nonhashable
assert {1: 1} not in G # no exception for nonhashable
def test_order(self):
G = self.K3
assert len(G) == 3
assert G.order() == 3
assert G.number_of_nodes() == 3
def test_nodes(self):
G = self.K3
assert isinstance(G._node, G.node_dict_factory)
assert isinstance(G._adj, G.adjlist_outer_dict_factory)
assert all(
isinstance(adj, G.adjlist_inner_dict_factory) for adj in G._adj.values()
)
assert sorted(G.nodes()) == self.k3nodes
assert sorted(G.nodes(data=True)) == [(0, {}), (1, {}), (2, {})]
def test_none_node(self):
G = self.Graph()
with pytest.raises(ValueError):
G.add_node(None)
with pytest.raises(ValueError):
G.add_nodes_from([None])
with pytest.raises(ValueError):
G.add_edge(0, None)
with pytest.raises(ValueError):
G.add_edges_from([(0, None)])
def test_has_node(self):
G = self.K3
assert G.has_node(1)
assert not G.has_node(4)
assert not G.has_node([]) # no exception for nonhashable
assert not G.has_node({1: 1}) # no exception for nonhashable
def test_has_edge(self):
G = self.K3
assert G.has_edge(0, 1)
assert not G.has_edge(0, -1)
def test_neighbors(self):
G = self.K3
assert sorted(G.neighbors(0)) == [1, 2]
with pytest.raises(nx.NetworkXError):
G.neighbors(-1)
@pytest.mark.skipif(
platform.python_implementation() == "PyPy", reason="PyPy gc is different"
)
def test_memory_leak(self):
G = self.Graph()
def count_objects_of_type(_type):
# Iterating over all objects tracked by gc can include weak references
# whose weakly-referenced objects may no longer exist. Calling `isinstance`
# on such a weak reference will raise ReferenceError. There are at least
# three workarounds for this: one is to compare type names instead of using
# `isinstance` such as `type(obj).__name__ == typename`, another is to use
# `type(obj) == _type`, and the last is to ignore ProxyTypes as we do below.
# NOTE: even if this safeguard is deemed unnecessary to pass NetworkX tests,
# we should still keep it for maximum safety for other NetworkX backends.
return sum(
1
for obj in gc.get_objects()
if not isinstance(obj, weakref.ProxyTypes) and isinstance(obj, _type)
)
gc.collect()
before = count_objects_of_type(self.Graph)
G.copy()
gc.collect()
after = count_objects_of_type(self.Graph)
assert before == after
# test a subgraph of the base class
class MyGraph(self.Graph):
pass
gc.collect()
G = MyGraph()
before = count_objects_of_type(MyGraph)
G.copy()
gc.collect()
after = count_objects_of_type(MyGraph)
assert before == after
def test_edges(self):
G = self.K3
assert isinstance(G._adj, G.adjlist_outer_dict_factory)
assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
assert edges_equal(G.edges(0), [(0, 1), (0, 2)])
assert edges_equal(G.edges([0, 1]), [(0, 1), (0, 2), (1, 2)])
with pytest.raises(nx.NetworkXError):
G.edges(-1)
def test_degree(self):
G = self.K3
assert sorted(G.degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.degree()) == {0: 2, 1: 2, 2: 2}
assert G.degree(0) == 2
with pytest.raises(nx.NetworkXError):
G.degree(-1) # node not in graph
def test_size(self):
G = self.K3
assert G.size() == 3
assert G.number_of_edges() == 3
def test_nbunch_iter(self):
G = self.K3
assert nodes_equal(G.nbunch_iter(), self.k3nodes) # all nodes
assert nodes_equal(G.nbunch_iter(0), [0]) # single node
assert nodes_equal(G.nbunch_iter([0, 1]), [0, 1]) # sequence
# sequence with none in graph
assert nodes_equal(G.nbunch_iter([-1]), [])
# string sequence with none in graph
assert nodes_equal(G.nbunch_iter("foo"), [])
# node not in graph doesn't get caught upon creation of iterator
bunch = G.nbunch_iter(-1)
# but gets caught when iterator used
with pytest.raises(nx.NetworkXError, match="is not a node or a sequence"):
list(bunch)
# unhashable doesn't get caught upon creation of iterator
bunch = G.nbunch_iter([0, 1, 2, {}])
# but gets caught when iterator hits the unhashable
with pytest.raises(
nx.NetworkXError, match="in sequence nbunch is not a valid node"
):
list(bunch)
def test_nbunch_iter_node_format_raise(self):
# Tests that a node that would have failed string formatting
# doesn't cause an error when attempting to raise a
# :exc:`nx.NetworkXError`.
# For more information, see pull request #1813.
G = self.Graph()
nbunch = [("x", set())]
with pytest.raises(nx.NetworkXError):
list(G.nbunch_iter(nbunch))
def test_selfloop_degree(self):
G = self.Graph()
G.add_edge(1, 1)
assert sorted(G.degree()) == [(1, 2)]
assert dict(G.degree()) == {1: 2}
assert G.degree(1) == 2
assert sorted(G.degree([1])) == [(1, 2)]
assert G.degree(1, weight="weight") == 2
def test_selfloops(self):
G = self.K3.copy()
G.add_edge(0, 0)
assert nodes_equal(nx.nodes_with_selfloops(G), [0])
assert edges_equal(nx.selfloop_edges(G), [(0, 0)])
assert nx.number_of_selfloops(G) == 1
G.remove_edge(0, 0)
G.add_edge(0, 0)
G.remove_edges_from([(0, 0)])
G.add_edge(1, 1)
G.remove_node(1)
G.add_edge(0, 0)
G.add_edge(1, 1)
G.remove_nodes_from([0, 1])
def test_cache_reset(self):
G = self.K3.copy()
old_adj = G.adj
assert id(G.adj) == id(old_adj)
G._adj = {}
assert id(G.adj) != id(old_adj)
old_nodes = G.nodes
assert id(G.nodes) == id(old_nodes)
G._node = {}
assert id(G.nodes) != id(old_nodes)
def test_attributes_cached(self):
G = self.K3.copy()
assert id(G.nodes) == id(G.nodes)
assert id(G.edges) == id(G.edges)
assert id(G.degree) == id(G.degree)
assert id(G.adj) == id(G.adj)
class BaseAttrGraphTester(BaseGraphTester):
"""Tests of graph class attribute features."""
def test_weighted_degree(self):
G = self.Graph()
G.add_edge(1, 2, weight=2, other=3)
G.add_edge(2, 3, weight=3, other=4)
assert sorted(d for n, d in G.degree(weight="weight")) == [2, 3, 5]
assert dict(G.degree(weight="weight")) == {1: 2, 2: 5, 3: 3}
assert G.degree(1, weight="weight") == 2
assert nodes_equal((G.degree([1], weight="weight")), [(1, 2)])
assert nodes_equal((d for n, d in G.degree(weight="other")), [3, 7, 4])
assert dict(G.degree(weight="other")) == {1: 3, 2: 7, 3: 4}
assert G.degree(1, weight="other") == 3
assert edges_equal((G.degree([1], weight="other")), [(1, 3)])
def add_attributes(self, G):
G.graph["foo"] = []
G.nodes[0]["foo"] = []
G.remove_edge(1, 2)
ll = []
G.add_edge(1, 2, foo=ll)
G.add_edge(2, 1, foo=ll)
def test_name(self):
G = self.Graph(name="")
assert G.name == ""
G = self.Graph(name="test")
assert G.name == "test"
def test_str_unnamed(self):
G = self.Graph()
G.add_edges_from([(1, 2), (2, 3)])
assert str(G) == f"{type(G).__name__} with 3 nodes and 2 edges"
def test_str_named(self):
G = self.Graph(name="foo")
G.add_edges_from([(1, 2), (2, 3)])
assert str(G) == f"{type(G).__name__} named 'foo' with 3 nodes and 2 edges"
def test_graph_chain(self):
G = self.Graph([(0, 1), (1, 2)])
DG = G.to_directed(as_view=True)
SDG = DG.subgraph([0, 1])
RSDG = SDG.reverse(copy=False)
assert G is DG._graph
assert DG is SDG._graph
assert SDG is RSDG._graph
def test_copy(self):
G = self.Graph()
G.add_node(0)
G.add_edge(1, 2)
self.add_attributes(G)
# copy edge datadict but any container attr are same
H = G.copy()
self.graphs_equal(H, G)
self.different_attrdict(H, G)
self.shallow_copy_attrdict(H, G)
def test_class_copy(self):
G = self.Graph()
G.add_node(0)
G.add_edge(1, 2)
self.add_attributes(G)
# copy edge datadict but any container attr are same
H = G.__class__(G)
self.graphs_equal(H, G)
self.different_attrdict(H, G)
self.shallow_copy_attrdict(H, G)
def test_fresh_copy(self):
G = self.Graph()
G.add_node(0)
G.add_edge(1, 2)
self.add_attributes(G)
# copy graph structure but use fresh datadict
H = G.__class__()
H.add_nodes_from(G)
H.add_edges_from(G.edges())
assert len(G.nodes[0]) == 1
ddict = G.adj[1][2][0] if G.is_multigraph() else G.adj[1][2]
assert len(ddict) == 1
assert len(H.nodes[0]) == 0
ddict = H.adj[1][2][0] if H.is_multigraph() else H.adj[1][2]
assert len(ddict) == 0
def is_deepcopy(self, H, G):
self.graphs_equal(H, G)
self.different_attrdict(H, G)
self.deep_copy_attrdict(H, G)
def deep_copy_attrdict(self, H, G):
self.deepcopy_graph_attr(H, G)
self.deepcopy_node_attr(H, G)
self.deepcopy_edge_attr(H, G)
def deepcopy_graph_attr(self, H, G):
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] != H.graph["foo"]
def deepcopy_node_attr(self, H, G):
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] != H.nodes[0]["foo"]
def deepcopy_edge_attr(self, H, G):
assert G[1][2]["foo"] == H[1][2]["foo"]
G[1][2]["foo"].append(1)
assert G[1][2]["foo"] != H[1][2]["foo"]
def is_shallow_copy(self, H, G):
self.graphs_equal(H, G)
self.shallow_copy_attrdict(H, G)
def shallow_copy_attrdict(self, H, G):
self.shallow_copy_graph_attr(H, G)
self.shallow_copy_node_attr(H, G)
self.shallow_copy_edge_attr(H, G)
def shallow_copy_graph_attr(self, H, G):
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] == H.graph["foo"]
def shallow_copy_node_attr(self, H, G):
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
def shallow_copy_edge_attr(self, H, G):
assert G[1][2]["foo"] == H[1][2]["foo"]
G[1][2]["foo"].append(1)
assert G[1][2]["foo"] == H[1][2]["foo"]
def same_attrdict(self, H, G):
old_foo = H[1][2]["foo"]
H.adj[1][2]["foo"] = "baz"
assert G.edges == H.edges
H.adj[1][2]["foo"] = old_foo
assert G.edges == H.edges
old_foo = H.nodes[0]["foo"]
H.nodes[0]["foo"] = "baz"
assert G.nodes == H.nodes
H.nodes[0]["foo"] = old_foo
assert G.nodes == H.nodes
def different_attrdict(self, H, G):
old_foo = H[1][2]["foo"]
H.adj[1][2]["foo"] = "baz"
assert G._adj != H._adj
H.adj[1][2]["foo"] = old_foo
assert G._adj == H._adj
old_foo = H.nodes[0]["foo"]
H.nodes[0]["foo"] = "baz"
assert G._node != H._node
H.nodes[0]["foo"] = old_foo
assert G._node == H._node
def graphs_equal(self, H, G):
assert G._adj == H._adj
assert G._node == H._node
assert G.graph == H.graph
assert G.name == H.name
if not G.is_directed() and not H.is_directed():
assert H._adj[1][2] is H._adj[2][1]
assert G._adj[1][2] is G._adj[2][1]
else: # at least one is directed
if not G.is_directed():
G._pred = G._adj
G._succ = G._adj
if not H.is_directed():
H._pred = H._adj
H._succ = H._adj
assert G._pred == H._pred
assert G._succ == H._succ
assert H._succ[1][2] is H._pred[2][1]
assert G._succ[1][2] is G._pred[2][1]
def test_graph_attr(self):
G = self.K3.copy()
G.graph["foo"] = "bar"
assert isinstance(G.graph, G.graph_attr_dict_factory)
assert G.graph["foo"] == "bar"
del G.graph["foo"]
assert G.graph == {}
H = self.Graph(foo="bar")
assert H.graph["foo"] == "bar"
def test_node_attr(self):
G = self.K3.copy()
G.add_node(1, foo="bar")
assert all(
isinstance(d, G.node_attr_dict_factory) for u, d in G.nodes(data=True)
)
assert nodes_equal(G.nodes(), [0, 1, 2])
assert nodes_equal(G.nodes(data=True), [(0, {}), (1, {"foo": "bar"}), (2, {})])
G.nodes[1]["foo"] = "baz"
assert nodes_equal(G.nodes(data=True), [(0, {}), (1, {"foo": "baz"}), (2, {})])
assert nodes_equal(G.nodes(data="foo"), [(0, None), (1, "baz"), (2, None)])
assert nodes_equal(
G.nodes(data="foo", default="bar"), [(0, "bar"), (1, "baz"), (2, "bar")]
)
def test_node_attr2(self):
G = self.K3.copy()
a = {"foo": "bar"}
G.add_node(3, **a)
assert nodes_equal(G.nodes(), [0, 1, 2, 3])
assert nodes_equal(
G.nodes(data=True), [(0, {}), (1, {}), (2, {}), (3, {"foo": "bar"})]
)
def test_edge_lookup(self):
G = self.Graph()
G.add_edge(1, 2, foo="bar")
assert edges_equal(G.edges[1, 2], {"foo": "bar"})
def test_edge_attr(self):
G = self.Graph()
G.add_edge(1, 2, foo="bar")
assert all(
isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True)
)
assert edges_equal(G.edges(data=True), [(1, 2, {"foo": "bar"})])
assert edges_equal(G.edges(data="foo"), [(1, 2, "bar")])
def test_edge_attr2(self):
G = self.Graph()
G.add_edges_from([(1, 2), (3, 4)], foo="foo")
assert edges_equal(
G.edges(data=True), [(1, 2, {"foo": "foo"}), (3, 4, {"foo": "foo"})]
)
assert edges_equal(G.edges(data="foo"), [(1, 2, "foo"), (3, 4, "foo")])
def test_edge_attr3(self):
G = self.Graph()
G.add_edges_from([(1, 2, {"weight": 32}), (3, 4, {"weight": 64})], foo="foo")
assert edges_equal(
G.edges(data=True),
[
(1, 2, {"foo": "foo", "weight": 32}),
(3, 4, {"foo": "foo", "weight": 64}),
],
)
G.remove_edges_from([(1, 2), (3, 4)])
G.add_edge(1, 2, data=7, spam="bar", bar="foo")
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
)
def test_edge_attr4(self):
G = self.Graph()
G.add_edge(1, 2, data=7, spam="bar", bar="foo")
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
)
G[1][2]["data"] = 10 # OK to set data like this
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})]
)
G.adj[1][2]["data"] = 20
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})]
)
G.edges[1, 2]["data"] = 21 # another spelling, "edge"
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})]
)
G.adj[1][2]["listdata"] = [20, 200]
G.adj[1][2]["weight"] = 20
dd = {
"data": 21,
"spam": "bar",
"bar": "foo",
"listdata": [20, 200],
"weight": 20,
}
assert edges_equal(G.edges(data=True), [(1, 2, dd)])
def test_to_undirected(self):
G = self.K3
self.add_attributes(G)
H = nx.Graph(G)
self.is_shallow_copy(H, G)
self.different_attrdict(H, G)
H = G.to_undirected()
self.is_deepcopy(H, G)
def test_to_directed_as_view(self):
H = nx.path_graph(2, create_using=self.Graph)
H2 = H.to_directed(as_view=True)
assert H is H2._graph
assert H2.has_edge(0, 1)
assert H2.has_edge(1, 0) or H.is_directed()
pytest.raises(nx.NetworkXError, H2.add_node, -1)
pytest.raises(nx.NetworkXError, H2.add_edge, 1, 2)
H.add_edge(1, 2)
assert H2.has_edge(1, 2)
assert H2.has_edge(2, 1) or H.is_directed()
def test_to_undirected_as_view(self):
H = nx.path_graph(2, create_using=self.Graph)
H2 = H.to_undirected(as_view=True)
assert H is H2._graph
assert H2.has_edge(0, 1)
assert H2.has_edge(1, 0)
pytest.raises(nx.NetworkXError, H2.add_node, -1)
pytest.raises(nx.NetworkXError, H2.add_edge, 1, 2)
H.add_edge(1, 2)
assert H2.has_edge(1, 2)
assert H2.has_edge(2, 1)
def test_directed_class(self):
G = self.Graph()
class newGraph(G.to_undirected_class()):
def to_directed_class(self):
return newDiGraph
def to_undirected_class(self):
return newGraph
class newDiGraph(G.to_directed_class()):
def to_directed_class(self):
return newDiGraph
def to_undirected_class(self):
return newGraph
G = newDiGraph() if G.is_directed() else newGraph()
H = G.to_directed()
assert isinstance(H, newDiGraph)
H = G.to_undirected()
assert isinstance(H, newGraph)
def test_to_directed(self):
G = self.K3
self.add_attributes(G)
H = nx.DiGraph(G)
self.is_shallow_copy(H, G)
self.different_attrdict(H, G)
H = G.to_directed()
self.is_deepcopy(H, G)
def test_subgraph(self):
G = self.K3
self.add_attributes(G)
H = G.subgraph([0, 1, 2, 5])
self.graphs_equal(H, G)
self.same_attrdict(H, G)
self.shallow_copy_attrdict(H, G)
H = G.subgraph(0)
assert H.adj == {0: {}}
H = G.subgraph([])
assert H.adj == {}
assert G.adj != {}
def test_selfloops_attr(self):
G = self.K3.copy()
G.add_edge(0, 0)
G.add_edge(1, 1, weight=2)
assert edges_equal(
nx.selfloop_edges(G, data=True), [(0, 0, {}), (1, 1, {"weight": 2})]
)
assert edges_equal(
nx.selfloop_edges(G, data="weight"), [(0, 0, None), (1, 1, 2)]
)
class TestGraph(BaseAttrGraphTester):
"""Tests specific to dict-of-dict-of-dict graph data structure"""
def setup_method(self):
self.Graph = nx.Graph
# build dict-of-dict-of-dict K3
ed1, ed2, ed3 = ({}, {}, {})
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._adj = self.k3adj
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
def test_pickle(self):
G = self.K3
pg = pickle.loads(pickle.dumps(G, -1))
self.graphs_equal(pg, G)
pg = pickle.loads(pickle.dumps(G))
self.graphs_equal(pg, G)
def test_data_input(self):
G = self.Graph({1: [2], 2: [1]}, name="test")
assert G.name == "test"
assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]
def test_adjacency(self):
G = self.K3
assert dict(G.adjacency()) == {
0: {1: {}, 2: {}},
1: {0: {}, 2: {}},
2: {0: {}, 1: {}},
}
def test_getitem(self):
G = self.K3
assert G.adj[0] == {1: {}, 2: {}}
assert G[0] == {1: {}, 2: {}}
with pytest.raises(KeyError):
G.__getitem__("j")
with pytest.raises(TypeError):
G.__getitem__(["A"])
def test_add_node(self):
G = self.Graph()
G.add_node(0)
assert G.adj == {0: {}}
# test add attributes
G.add_node(1, c="red")
G.add_node(2, c="blue")
G.add_node(3, c="red")
assert G.nodes[1]["c"] == "red"
assert G.nodes[2]["c"] == "blue"
assert G.nodes[3]["c"] == "red"
# test updating attributes
G.add_node(1, c="blue")
G.add_node(2, c="red")
G.add_node(3, c="blue")
assert G.nodes[1]["c"] == "blue"
assert G.nodes[2]["c"] == "red"
assert G.nodes[3]["c"] == "blue"
def test_add_nodes_from(self):
G = self.Graph()
G.add_nodes_from([0, 1, 2])
assert G.adj == {0: {}, 1: {}, 2: {}}
# test add attributes
G.add_nodes_from([0, 1, 2], c="red")
assert G.nodes[0]["c"] == "red"
assert G.nodes[2]["c"] == "red"
# test that attribute dicts are not the same
assert G.nodes[0] is not G.nodes[1]
# test updating attributes
G.add_nodes_from([0, 1, 2], c="blue")
assert G.nodes[0]["c"] == "blue"
assert G.nodes[2]["c"] == "blue"
assert G.nodes[0] is not G.nodes[1]
# test tuple input
H = self.Graph()
H.add_nodes_from(G.nodes(data=True))
assert H.nodes[0]["c"] == "blue"
assert H.nodes[2]["c"] == "blue"
assert H.nodes[0] is not H.nodes[1]
# specific overrides general
H.add_nodes_from([0, (1, {"c": "green"}), (3, {"c": "cyan"})], c="red")
assert H.nodes[0]["c"] == "red"
assert H.nodes[1]["c"] == "green"
assert H.nodes[2]["c"] == "blue"
assert H.nodes[3]["c"] == "cyan"
def test_remove_node(self):
G = self.K3.copy()
G.remove_node(0)
assert G.adj == {1: {2: {}}, 2: {1: {}}}
with pytest.raises(nx.NetworkXError):
G.remove_node(-1)
# generator here to implement list,set,string...
def test_remove_nodes_from(self):
G = self.K3.copy()
G.remove_nodes_from([0, 1])
assert G.adj == {2: {}}
G.remove_nodes_from([-1]) # silent fail
def test_add_edge(self):
G = self.Graph()
G.add_edge(0, 1)
assert G.adj == {0: {1: {}}, 1: {0: {}}}
G = self.Graph()
G.add_edge(*(0, 1))
assert G.adj == {0: {1: {}}, 1: {0: {}}}
G = self.Graph()
with pytest.raises(ValueError):
G.add_edge(None, "anything")
def test_add_edges_from(self):
G = self.Graph()
G.add_edges_from([(0, 1), (0, 2, {"weight": 3})])
assert G.adj == {
0: {1: {}, 2: {"weight": 3}},
1: {0: {}},
2: {0: {"weight": 3}},
}
G = self.Graph()
G.add_edges_from([(0, 1), (0, 2, {"weight": 3}), (1, 2, {"data": 4})], data=2)
assert G.adj == {
0: {1: {"data": 2}, 2: {"weight": 3, "data": 2}},
1: {0: {"data": 2}, 2: {"data": 4}},
2: {0: {"weight": 3, "data": 2}, 1: {"data": 4}},
}
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0,)]) # too few in tuple
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0, 1, 2, 3)]) # too many in tuple
with pytest.raises(TypeError):
G.add_edges_from([0]) # not a tuple
with pytest.raises(ValueError):
G.add_edges_from([(None, 3), (3, 2)]) # None cannot be a node
def test_remove_edge(self):
G = self.K3.copy()
G.remove_edge(0, 1)
assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
with pytest.raises(nx.NetworkXError):
G.remove_edge(-1, 0)
def test_remove_edges_from(self):
G = self.K3.copy()
G.remove_edges_from([(0, 1)])
assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
G.remove_edges_from([(0, 0)]) # silent fail
def test_clear(self):
G = self.K3.copy()
G.graph["name"] = "K3"
G.clear()
assert list(G.nodes) == []
assert G.adj == {}
assert G.graph == {}
def test_clear_edges(self):
G = self.K3.copy()
G.graph["name"] = "K3"
nodes = list(G.nodes)
G.clear_edges()
assert list(G.nodes) == nodes
assert G.adj == {0: {}, 1: {}, 2: {}}
assert list(G.edges) == []
assert G.graph["name"] == "K3"
def test_edges_data(self):
G = self.K3
all_edges = [(0, 1, {}), (0, 2, {}), (1, 2, {})]
assert edges_equal(G.edges(data=True), all_edges)
assert edges_equal(G.edges(0, data=True), [(0, 1, {}), (0, 2, {})])
assert edges_equal(G.edges([0, 1], data=True), all_edges)
with pytest.raises(nx.NetworkXError):
G.edges(-1, True)
def test_get_edge_data(self):
G = self.K3.copy()
assert G.get_edge_data(0, 1) == {}
assert G[0][1] == {}
assert G.get_edge_data(10, 20) is None
assert G.get_edge_data(-1, 0) is None
assert G.get_edge_data(-1, 0, default=1) == 1
def test_update(self):
# specify both edges and nodes
G = self.K3.copy()
G.update(nodes=[3, (4, {"size": 2})], edges=[(4, 5), (6, 7, {"weight": 2})])
nlist = [
(0, {}),
(1, {}),
(2, {}),
(3, {}),
(4, {"size": 2}),
(5, {}),
(6, {}),
(7, {}),
]
assert sorted(G.nodes.data()) == nlist
if G.is_directed():
elist = [
(0, 1, {}),
(0, 2, {}),
(1, 0, {}),
(1, 2, {}),
(2, 0, {}),
(2, 1, {}),
(4, 5, {}),
(6, 7, {"weight": 2}),
]
else:
elist = [
(0, 1, {}),
(0, 2, {}),
(1, 2, {}),
(4, 5, {}),
(6, 7, {"weight": 2}),
]
assert sorted(G.edges.data()) == elist
assert G.graph == {}
# no keywords -- order is edges, nodes
G = self.K3.copy()
G.update([(4, 5), (6, 7, {"weight": 2})], [3, (4, {"size": 2})])
assert sorted(G.nodes.data()) == nlist
assert sorted(G.edges.data()) == elist
assert G.graph == {}
# update using only a graph
G = self.Graph()
G.graph["foo"] = "bar"
G.add_node(2, data=4)
G.add_edge(0, 1, weight=0.5)
GG = G.copy()
H = self.Graph()
GG.update(H)
assert graphs_equal(G, GG)
H.update(G)
assert graphs_equal(H, G)
# update nodes only
H = self.Graph()
H.update(nodes=[3, 4])
assert H.nodes ^ {3, 4} == set()
assert H.size() == 0
# update edges only
H = self.Graph()
H.update(edges=[(3, 4)])
assert sorted(H.edges.data()) == [(3, 4, {})]
assert H.size() == 1
# No inputs -> exception
with pytest.raises(nx.NetworkXError):
nx.Graph().update()
class TestEdgeSubgraph:
"""Unit tests for the :meth:`Graph.edge_subgraph` method."""
def setup_method(self):
# Create a path graph on five nodes.
G = nx.path_graph(5)
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.edges[0, 1]["name"] = "edge01"
G.edges[3, 4]["name"] = "edge34"
G.graph["name"] = "graph"
# Get the subgraph induced by the first and last edges.
self.G = G
self.H = G.edge_subgraph([(0, 1), (3, 4)])
def test_correct_nodes(self):
"""Tests that the subgraph has the correct nodes."""
assert [0, 1, 3, 4] == sorted(self.H.nodes())
def test_correct_edges(self):
"""Tests that the subgraph has the correct edges."""
assert [(0, 1, "edge01"), (3, 4, "edge34")] == sorted(self.H.edges(data="name"))
def test_add_node(self):
"""Tests that adding a node to the original graph does not
affect the nodes of the subgraph.
"""
self.G.add_node(5)
assert [0, 1, 3, 4] == sorted(self.H.nodes())
def test_remove_node(self):
"""Tests that removing a node in the original graph does
affect the nodes of the subgraph.
"""
self.G.remove_node(0)
assert [1, 3, 4] == sorted(self.H.nodes())
def test_node_attr_dict(self):
"""Tests that the node attribute dictionary of the two graphs is
the same object.
"""
for v in self.H:
assert self.G.nodes[v] == self.H.nodes[v]
# Making a change to G should make a change in H and vice versa.
self.G.nodes[0]["name"] = "foo"
assert self.G.nodes[0] == self.H.nodes[0]
self.H.nodes[1]["name"] = "bar"
assert self.G.nodes[1] == self.H.nodes[1]
def test_edge_attr_dict(self):
"""Tests that the edge attribute dictionary of the two graphs is
the same object.
"""
for u, v in self.H.edges():
assert self.G.edges[u, v] == self.H.edges[u, v]
# Making a change to G should make a change in H and vice versa.
self.G.edges[0, 1]["name"] = "foo"
assert self.G.edges[0, 1]["name"] == self.H.edges[0, 1]["name"]
self.H.edges[3, 4]["name"] = "bar"
assert self.G.edges[3, 4]["name"] == self.H.edges[3, 4]["name"]
def test_graph_attr_dict(self):
"""Tests that the graph attribute dictionary of the two graphs
is the same object.
"""
assert self.G.graph is self.H.graph
|