File size: 55,283 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
"""Pickler class to extend the standard pickle.Pickler functionality

The main objective is to make it natural to perform distributed computing on
clusters (such as PySpark, Dask, Ray...) with interactively defined code
(functions, classes, ...) written in notebooks or console.

In particular this pickler adds the following features:
- serialize interactively-defined or locally-defined functions, classes,
  enums, typevars, lambdas and nested functions to compiled byte code;
- deal with some other non-serializable objects in an ad-hoc manner where
  applicable.

This pickler is therefore meant to be used for the communication between short
lived Python processes running the same version of Python and libraries. In
particular, it is not meant to be used for long term storage of Python objects.

It does not include an unpickler, as standard Python unpickling suffices.

This module was extracted from the `cloud` package, developed by `PiCloud, Inc.
<https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.

Copyright (c) 2012-now, CloudPickle developers and contributors.
Copyright (c) 2012, Regents of the University of California.
Copyright (c) 2009 `PiCloud, Inc. <https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of the University of California, Berkeley nor the
      names of its contributors may be used to endorse or promote
      products derived from this software without specific prior written
      permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""

import _collections_abc
from collections import ChainMap, OrderedDict
import abc
import builtins
import copyreg
import dataclasses
import dis
from enum import Enum
import io
import itertools
import logging
import opcode
import pickle
from pickle import _getattribute
import platform
import struct
import sys
import threading
import types
import typing
import uuid
import warnings
import weakref

# The following import is required to be imported in the cloudpickle
# namespace to be able to load pickle files generated with older versions of
# cloudpickle. See: tests/test_backward_compat.py
from types import CellType  # noqa: F401


# cloudpickle is meant for inter process communication: we expect all
# communicating processes to run the same Python version hence we favor
# communication speed over compatibility:
DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL

# Names of modules whose resources should be treated as dynamic.
_PICKLE_BY_VALUE_MODULES = set()

# Track the provenance of reconstructed dynamic classes to make it possible to
# reconstruct instances from the matching singleton class definition when
# appropriate and preserve the usual "isinstance" semantics of Python objects.
_DYNAMIC_CLASS_TRACKER_BY_CLASS = weakref.WeakKeyDictionary()
_DYNAMIC_CLASS_TRACKER_BY_ID = weakref.WeakValueDictionary()
_DYNAMIC_CLASS_TRACKER_LOCK = threading.Lock()

PYPY = platform.python_implementation() == "PyPy"

builtin_code_type = None
if PYPY:
    # builtin-code objects only exist in pypy
    builtin_code_type = type(float.__new__.__code__)

_extract_code_globals_cache = weakref.WeakKeyDictionary()


def _get_or_create_tracker_id(class_def):
    with _DYNAMIC_CLASS_TRACKER_LOCK:
        class_tracker_id = _DYNAMIC_CLASS_TRACKER_BY_CLASS.get(class_def)
        if class_tracker_id is None:
            class_tracker_id = uuid.uuid4().hex
            _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
            _DYNAMIC_CLASS_TRACKER_BY_ID[class_tracker_id] = class_def
    return class_tracker_id


def _lookup_class_or_track(class_tracker_id, class_def):
    if class_tracker_id is not None:
        with _DYNAMIC_CLASS_TRACKER_LOCK:
            class_def = _DYNAMIC_CLASS_TRACKER_BY_ID.setdefault(
                class_tracker_id, class_def
            )
            _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
    return class_def


def register_pickle_by_value(module):
    """Register a module to make it functions and classes picklable by value.

    By default, functions and classes that are attributes of an importable
    module are to be pickled by reference, that is relying on re-importing
    the attribute from the module at load time.

    If `register_pickle_by_value(module)` is called, all its functions and
    classes are subsequently to be pickled by value, meaning that they can
    be loaded in Python processes where the module is not importable.

    This is especially useful when developing a module in a distributed
    execution environment: restarting the client Python process with the new
    source code is enough: there is no need to re-install the new version
    of the module on all the worker nodes nor to restart the workers.

    Note: this feature is considered experimental. See the cloudpickle
    README.md file for more details and limitations.
    """
    if not isinstance(module, types.ModuleType):
        raise ValueError(f"Input should be a module object, got {str(module)} instead")
    # In the future, cloudpickle may need a way to access any module registered
    # for pickling by value in order to introspect relative imports inside
    # functions pickled by value. (see
    # https://github.com/cloudpipe/cloudpickle/pull/417#issuecomment-873684633).
    # This access can be ensured by checking that module is present in
    # sys.modules at registering time and assuming that it will still be in
    # there when accessed during pickling. Another alternative would be to
    # store a weakref to the module. Even though cloudpickle does not implement
    # this introspection yet, in order to avoid a possible breaking change
    # later, we still enforce the presence of module inside sys.modules.
    if module.__name__ not in sys.modules:
        raise ValueError(
            f"{module} was not imported correctly, have you used an "
            "`import` statement to access it?"
        )
    _PICKLE_BY_VALUE_MODULES.add(module.__name__)


def unregister_pickle_by_value(module):
    """Unregister that the input module should be pickled by value."""
    if not isinstance(module, types.ModuleType):
        raise ValueError(f"Input should be a module object, got {str(module)} instead")
    if module.__name__ not in _PICKLE_BY_VALUE_MODULES:
        raise ValueError(f"{module} is not registered for pickle by value")
    else:
        _PICKLE_BY_VALUE_MODULES.remove(module.__name__)


def list_registry_pickle_by_value():
    return _PICKLE_BY_VALUE_MODULES.copy()


def _is_registered_pickle_by_value(module):
    module_name = module.__name__
    if module_name in _PICKLE_BY_VALUE_MODULES:
        return True
    while True:
        parent_name = module_name.rsplit(".", 1)[0]
        if parent_name == module_name:
            break
        if parent_name in _PICKLE_BY_VALUE_MODULES:
            return True
        module_name = parent_name
    return False


def _whichmodule(obj, name):
    """Find the module an object belongs to.

    This function differs from ``pickle.whichmodule`` in two ways:
    - it does not mangle the cases where obj's module is __main__ and obj was
      not found in any module.
    - Errors arising during module introspection are ignored, as those errors
      are considered unwanted side effects.
    """
    module_name = getattr(obj, "__module__", None)

    if module_name is not None:
        return module_name
    # Protect the iteration by using a copy of sys.modules against dynamic
    # modules that trigger imports of other modules upon calls to getattr or
    # other threads importing at the same time.
    for module_name, module in sys.modules.copy().items():
        # Some modules such as coverage can inject non-module objects inside
        # sys.modules
        if (
            module_name == "__main__"
            or module is None
            or not isinstance(module, types.ModuleType)
        ):
            continue
        try:
            if _getattribute(module, name)[0] is obj:
                return module_name
        except Exception:
            pass
    return None


def _should_pickle_by_reference(obj, name=None):
    """Test whether an function or a class should be pickled by reference

    Pickling by reference means by that the object (typically a function or a
    class) is an attribute of a module that is assumed to be importable in the
    target Python environment. Loading will therefore rely on importing the
    module and then calling `getattr` on it to access the function or class.

    Pickling by reference is the only option to pickle functions and classes
    in the standard library. In cloudpickle the alternative option is to
    pickle by value (for instance for interactively or locally defined
    functions and classes or for attributes of modules that have been
    explicitly registered to be pickled by value.
    """
    if isinstance(obj, types.FunctionType) or issubclass(type(obj), type):
        module_and_name = _lookup_module_and_qualname(obj, name=name)
        if module_and_name is None:
            return False
        module, name = module_and_name
        return not _is_registered_pickle_by_value(module)

    elif isinstance(obj, types.ModuleType):
        # We assume that sys.modules is primarily used as a cache mechanism for
        # the Python import machinery. Checking if a module has been added in
        # is sys.modules therefore a cheap and simple heuristic to tell us
        # whether we can assume that a given module could be imported by name
        # in another Python process.
        if _is_registered_pickle_by_value(obj):
            return False
        return obj.__name__ in sys.modules
    else:
        raise TypeError(
            "cannot check importability of {} instances".format(type(obj).__name__)
        )


def _lookup_module_and_qualname(obj, name=None):
    if name is None:
        name = getattr(obj, "__qualname__", None)
    if name is None:  # pragma: no cover
        # This used to be needed for Python 2.7 support but is probably not
        # needed anymore. However we keep the __name__ introspection in case
        # users of cloudpickle rely on this old behavior for unknown reasons.
        name = getattr(obj, "__name__", None)

    module_name = _whichmodule(obj, name)

    if module_name is None:
        # In this case, obj.__module__ is None AND obj was not found in any
        # imported module. obj is thus treated as dynamic.
        return None

    if module_name == "__main__":
        return None

    # Note: if module_name is in sys.modules, the corresponding module is
    # assumed importable at unpickling time. See #357
    module = sys.modules.get(module_name, None)
    if module is None:
        # The main reason why obj's module would not be imported is that this
        # module has been dynamically created, using for example
        # types.ModuleType. The other possibility is that module was removed
        # from sys.modules after obj was created/imported. But this case is not
        # supported, as the standard pickle does not support it either.
        return None

    try:
        obj2, parent = _getattribute(module, name)
    except AttributeError:
        # obj was not found inside the module it points to
        return None
    if obj2 is not obj:
        return None
    return module, name


def _extract_code_globals(co):
    """Find all globals names read or written to by codeblock co."""
    out_names = _extract_code_globals_cache.get(co)
    if out_names is None:
        # We use a dict with None values instead of a set to get a
        # deterministic order and avoid introducing non-deterministic pickle
        # bytes as a results.
        out_names = {name: None for name in _walk_global_ops(co)}

        # Declaring a function inside another one using the "def ..." syntax
        # generates a constant code object corresponding to the one of the
        # nested function's As the nested function may itself need global
        # variables, we need to introspect its code, extract its globals, (look
        # for code object in it's co_consts attribute..) and add the result to
        # code_globals
        if co.co_consts:
            for const in co.co_consts:
                if isinstance(const, types.CodeType):
                    out_names.update(_extract_code_globals(const))

        _extract_code_globals_cache[co] = out_names

    return out_names


def _find_imported_submodules(code, top_level_dependencies):
    """Find currently imported submodules used by a function.

    Submodules used by a function need to be detected and referenced for the
    function to work correctly at depickling time. Because submodules can be
    referenced as attribute of their parent package (``package.submodule``), we
    need a special introspection technique that does not rely on GLOBAL-related
    opcodes to find references of them in a code object.

    Example:
    ```
    import concurrent.futures
    import cloudpickle
    def func():
        x = concurrent.futures.ThreadPoolExecutor
    if __name__ == '__main__':
        cloudpickle.dumps(func)
    ```
    The globals extracted by cloudpickle in the function's state include the
    concurrent package, but not its submodule (here, concurrent.futures), which
    is the module used by func. Find_imported_submodules will detect the usage
    of concurrent.futures. Saving this module alongside with func will ensure
    that calling func once depickled does not fail due to concurrent.futures
    not being imported
    """

    subimports = []
    # check if any known dependency is an imported package
    for x in top_level_dependencies:
        if (
            isinstance(x, types.ModuleType)
            and hasattr(x, "__package__")
            and x.__package__
        ):
            # check if the package has any currently loaded sub-imports
            prefix = x.__name__ + "."
            # A concurrent thread could mutate sys.modules,
            # make sure we iterate over a copy to avoid exceptions
            for name in list(sys.modules):
                # Older versions of pytest will add a "None" module to
                # sys.modules.
                if name is not None and name.startswith(prefix):
                    # check whether the function can address the sub-module
                    tokens = set(name[len(prefix) :].split("."))
                    if not tokens - set(code.co_names):
                        subimports.append(sys.modules[name])
    return subimports


# relevant opcodes
STORE_GLOBAL = opcode.opmap["STORE_GLOBAL"]
DELETE_GLOBAL = opcode.opmap["DELETE_GLOBAL"]
LOAD_GLOBAL = opcode.opmap["LOAD_GLOBAL"]
GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL)
HAVE_ARGUMENT = dis.HAVE_ARGUMENT
EXTENDED_ARG = dis.EXTENDED_ARG


_BUILTIN_TYPE_NAMES = {}
for k, v in types.__dict__.items():
    if type(v) is type:
        _BUILTIN_TYPE_NAMES[v] = k


def _builtin_type(name):
    if name == "ClassType":  # pragma: no cover
        # Backward compat to load pickle files generated with cloudpickle
        # < 1.3 even if loading pickle files from older versions is not
        # officially supported.
        return type
    return getattr(types, name)


def _walk_global_ops(code):
    """Yield referenced name for global-referencing instructions in code."""
    for instr in dis.get_instructions(code):
        op = instr.opcode
        if op in GLOBAL_OPS:
            yield instr.argval


def _extract_class_dict(cls):
    """Retrieve a copy of the dict of a class without the inherited method."""
    clsdict = dict(cls.__dict__)  # copy dict proxy to a dict
    if len(cls.__bases__) == 1:
        inherited_dict = cls.__bases__[0].__dict__
    else:
        inherited_dict = {}
        for base in reversed(cls.__bases__):
            inherited_dict.update(base.__dict__)
    to_remove = []
    for name, value in clsdict.items():
        try:
            base_value = inherited_dict[name]
            if value is base_value:
                to_remove.append(name)
        except KeyError:
            pass
    for name in to_remove:
        clsdict.pop(name)
    return clsdict


def is_tornado_coroutine(func):
    """Return whether `func` is a Tornado coroutine function.

    Running coroutines are not supported.
    """
    warnings.warn(
        "is_tornado_coroutine is deprecated in cloudpickle 3.0 and will be "
        "removed in cloudpickle 4.0. Use tornado.gen.is_coroutine_function "
        "directly instead.",
        category=DeprecationWarning,
    )
    if "tornado.gen" not in sys.modules:
        return False
    gen = sys.modules["tornado.gen"]
    if not hasattr(gen, "is_coroutine_function"):
        # Tornado version is too old
        return False
    return gen.is_coroutine_function(func)


def subimport(name):
    # We cannot do simply: `return __import__(name)`: Indeed, if ``name`` is
    # the name of a submodule, __import__ will return the top-level root module
    # of this submodule. For instance, __import__('os.path') returns the `os`
    # module.
    __import__(name)
    return sys.modules[name]


def dynamic_subimport(name, vars):
    mod = types.ModuleType(name)
    mod.__dict__.update(vars)
    mod.__dict__["__builtins__"] = builtins.__dict__
    return mod


def _get_cell_contents(cell):
    try:
        return cell.cell_contents
    except ValueError:
        # Handle empty cells explicitly with a sentinel value.
        return _empty_cell_value


def instance(cls):
    """Create a new instance of a class.

    Parameters
    ----------
    cls : type
        The class to create an instance of.

    Returns
    -------
    instance : cls
        A new instance of ``cls``.
    """
    return cls()


@instance
class _empty_cell_value:
    """Sentinel for empty closures."""

    @classmethod
    def __reduce__(cls):
        return cls.__name__


def _make_function(code, globals, name, argdefs, closure):
    # Setting __builtins__ in globals is needed for nogil CPython.
    globals["__builtins__"] = __builtins__
    return types.FunctionType(code, globals, name, argdefs, closure)


def _make_empty_cell():
    if False:
        # trick the compiler into creating an empty cell in our lambda
        cell = None
        raise AssertionError("this route should not be executed")

    return (lambda: cell).__closure__[0]


def _make_cell(value=_empty_cell_value):
    cell = _make_empty_cell()
    if value is not _empty_cell_value:
        cell.cell_contents = value
    return cell


def _make_skeleton_class(
    type_constructor, name, bases, type_kwargs, class_tracker_id, extra
):
    """Build dynamic class with an empty __dict__ to be filled once memoized

    If class_tracker_id is not None, try to lookup an existing class definition
    matching that id. If none is found, track a newly reconstructed class
    definition under that id so that other instances stemming from the same
    class id will also reuse this class definition.

    The "extra" variable is meant to be a dict (or None) that can be used for
    forward compatibility shall the need arise.
    """
    skeleton_class = types.new_class(
        name, bases, {"metaclass": type_constructor}, lambda ns: ns.update(type_kwargs)
    )
    return _lookup_class_or_track(class_tracker_id, skeleton_class)


def _make_skeleton_enum(
    bases, name, qualname, members, module, class_tracker_id, extra
):
    """Build dynamic enum with an empty __dict__ to be filled once memoized

    The creation of the enum class is inspired by the code of
    EnumMeta._create_.

    If class_tracker_id is not None, try to lookup an existing enum definition
    matching that id. If none is found, track a newly reconstructed enum
    definition under that id so that other instances stemming from the same
    class id will also reuse this enum definition.

    The "extra" variable is meant to be a dict (or None) that can be used for
    forward compatibility shall the need arise.
    """
    # enums always inherit from their base Enum class at the last position in
    # the list of base classes:
    enum_base = bases[-1]
    metacls = enum_base.__class__
    classdict = metacls.__prepare__(name, bases)

    for member_name, member_value in members.items():
        classdict[member_name] = member_value
    enum_class = metacls.__new__(metacls, name, bases, classdict)
    enum_class.__module__ = module
    enum_class.__qualname__ = qualname

    return _lookup_class_or_track(class_tracker_id, enum_class)


def _make_typevar(name, bound, constraints, covariant, contravariant, class_tracker_id):
    tv = typing.TypeVar(
        name,
        *constraints,
        bound=bound,
        covariant=covariant,
        contravariant=contravariant,
    )
    return _lookup_class_or_track(class_tracker_id, tv)


def _decompose_typevar(obj):
    return (
        obj.__name__,
        obj.__bound__,
        obj.__constraints__,
        obj.__covariant__,
        obj.__contravariant__,
        _get_or_create_tracker_id(obj),
    )


def _typevar_reduce(obj):
    # TypeVar instances require the module information hence why we
    # are not using the _should_pickle_by_reference directly
    module_and_name = _lookup_module_and_qualname(obj, name=obj.__name__)

    if module_and_name is None:
        return (_make_typevar, _decompose_typevar(obj))
    elif _is_registered_pickle_by_value(module_and_name[0]):
        return (_make_typevar, _decompose_typevar(obj))

    return (getattr, module_and_name)


def _get_bases(typ):
    if "__orig_bases__" in getattr(typ, "__dict__", {}):
        # For generic types (see PEP 560)
        # Note that simply checking `hasattr(typ, '__orig_bases__')` is not
        # correct.  Subclasses of a fully-parameterized generic class does not
        # have `__orig_bases__` defined, but `hasattr(typ, '__orig_bases__')`
        # will return True because it's defined in the base class.
        bases_attr = "__orig_bases__"
    else:
        # For regular class objects
        bases_attr = "__bases__"
    return getattr(typ, bases_attr)


def _make_dict_keys(obj, is_ordered=False):
    if is_ordered:
        return OrderedDict.fromkeys(obj).keys()
    else:
        return dict.fromkeys(obj).keys()


def _make_dict_values(obj, is_ordered=False):
    if is_ordered:
        return OrderedDict((i, _) for i, _ in enumerate(obj)).values()
    else:
        return {i: _ for i, _ in enumerate(obj)}.values()


def _make_dict_items(obj, is_ordered=False):
    if is_ordered:
        return OrderedDict(obj).items()
    else:
        return obj.items()


# COLLECTION OF OBJECTS __getnewargs__-LIKE METHODS
# -------------------------------------------------


def _class_getnewargs(obj):
    type_kwargs = {}
    if "__module__" in obj.__dict__:
        type_kwargs["__module__"] = obj.__module__

    __dict__ = obj.__dict__.get("__dict__", None)
    if isinstance(__dict__, property):
        type_kwargs["__dict__"] = __dict__

    return (
        type(obj),
        obj.__name__,
        _get_bases(obj),
        type_kwargs,
        _get_or_create_tracker_id(obj),
        None,
    )


def _enum_getnewargs(obj):
    members = {e.name: e.value for e in obj}
    return (
        obj.__bases__,
        obj.__name__,
        obj.__qualname__,
        members,
        obj.__module__,
        _get_or_create_tracker_id(obj),
        None,
    )


# COLLECTION OF OBJECTS RECONSTRUCTORS
# ------------------------------------
def _file_reconstructor(retval):
    return retval


# COLLECTION OF OBJECTS STATE GETTERS
# -----------------------------------


def _function_getstate(func):
    # - Put func's dynamic attributes (stored in func.__dict__) in state. These
    #   attributes will be restored at unpickling time using
    #   f.__dict__.update(state)
    # - Put func's members into slotstate. Such attributes will be restored at
    #   unpickling time by iterating over slotstate and calling setattr(func,
    #   slotname, slotvalue)
    slotstate = {
        "__name__": func.__name__,
        "__qualname__": func.__qualname__,
        "__annotations__": func.__annotations__,
        "__kwdefaults__": func.__kwdefaults__,
        "__defaults__": func.__defaults__,
        "__module__": func.__module__,
        "__doc__": func.__doc__,
        "__closure__": func.__closure__,
    }

    f_globals_ref = _extract_code_globals(func.__code__)
    f_globals = {k: func.__globals__[k] for k in f_globals_ref if k in func.__globals__}

    if func.__closure__ is not None:
        closure_values = list(map(_get_cell_contents, func.__closure__))
    else:
        closure_values = ()

    # Extract currently-imported submodules used by func. Storing these modules
    # in a smoke _cloudpickle_subimports attribute of the object's state will
    # trigger the side effect of importing these modules at unpickling time
    # (which is necessary for func to work correctly once depickled)
    slotstate["_cloudpickle_submodules"] = _find_imported_submodules(
        func.__code__, itertools.chain(f_globals.values(), closure_values)
    )
    slotstate["__globals__"] = f_globals

    state = func.__dict__
    return state, slotstate


def _class_getstate(obj):
    clsdict = _extract_class_dict(obj)
    clsdict.pop("__weakref__", None)

    if issubclass(type(obj), abc.ABCMeta):
        # If obj is an instance of an ABCMeta subclass, don't pickle the
        # cache/negative caches populated during isinstance/issubclass
        # checks, but pickle the list of registered subclasses of obj.
        clsdict.pop("_abc_cache", None)
        clsdict.pop("_abc_negative_cache", None)
        clsdict.pop("_abc_negative_cache_version", None)
        registry = clsdict.pop("_abc_registry", None)
        if registry is None:
            # The abc caches and registered subclasses of a
            # class are bundled into the single _abc_impl attribute
            clsdict.pop("_abc_impl", None)
            (registry, _, _, _) = abc._get_dump(obj)

            clsdict["_abc_impl"] = [subclass_weakref() for subclass_weakref in registry]
        else:
            # In the above if clause, registry is a set of weakrefs -- in
            # this case, registry is a WeakSet
            clsdict["_abc_impl"] = [type_ for type_ in registry]

    if "__slots__" in clsdict:
        # pickle string length optimization: member descriptors of obj are
        # created automatically from obj's __slots__ attribute, no need to
        # save them in obj's state
        if isinstance(obj.__slots__, str):
            clsdict.pop(obj.__slots__)
        else:
            for k in obj.__slots__:
                clsdict.pop(k, None)

    clsdict.pop("__dict__", None)  # unpicklable property object

    return (clsdict, {})


def _enum_getstate(obj):
    clsdict, slotstate = _class_getstate(obj)

    members = {e.name: e.value for e in obj}
    # Cleanup the clsdict that will be passed to _make_skeleton_enum:
    # Those attributes are already handled by the metaclass.
    for attrname in [
        "_generate_next_value_",
        "_member_names_",
        "_member_map_",
        "_member_type_",
        "_value2member_map_",
    ]:
        clsdict.pop(attrname, None)
    for member in members:
        clsdict.pop(member)
        # Special handling of Enum subclasses
    return clsdict, slotstate


# COLLECTIONS OF OBJECTS REDUCERS
# -------------------------------
# A reducer is a function taking a single argument (obj), and that returns a
# tuple with all the necessary data to re-construct obj. Apart from a few
# exceptions (list, dict, bytes, int, etc.), a reducer is necessary to
# correctly pickle an object.
# While many built-in objects (Exceptions objects, instances of the "object"
# class, etc), are shipped with their own built-in reducer (invoked using
# obj.__reduce__), some do not. The following methods were created to "fill
# these holes".


def _code_reduce(obj):
    """code object reducer."""
    # If you are not sure about the order of arguments, take a look at help
    # of the specific type from types, for example:
    # >>> from types import CodeType
    # >>> help(CodeType)
    if hasattr(obj, "co_exceptiontable"):
        # Python 3.11 and later: there are some new attributes
        # related to the enhanced exceptions.
        args = (
            obj.co_argcount,
            obj.co_posonlyargcount,
            obj.co_kwonlyargcount,
            obj.co_nlocals,
            obj.co_stacksize,
            obj.co_flags,
            obj.co_code,
            obj.co_consts,
            obj.co_names,
            obj.co_varnames,
            obj.co_filename,
            obj.co_name,
            obj.co_qualname,
            obj.co_firstlineno,
            obj.co_linetable,
            obj.co_exceptiontable,
            obj.co_freevars,
            obj.co_cellvars,
        )
    elif hasattr(obj, "co_linetable"):
        # Python 3.10 and later: obj.co_lnotab is deprecated and constructor
        # expects obj.co_linetable instead.
        args = (
            obj.co_argcount,
            obj.co_posonlyargcount,
            obj.co_kwonlyargcount,
            obj.co_nlocals,
            obj.co_stacksize,
            obj.co_flags,
            obj.co_code,
            obj.co_consts,
            obj.co_names,
            obj.co_varnames,
            obj.co_filename,
            obj.co_name,
            obj.co_firstlineno,
            obj.co_linetable,
            obj.co_freevars,
            obj.co_cellvars,
        )
    elif hasattr(obj, "co_nmeta"):  # pragma: no cover
        # "nogil" Python: modified attributes from 3.9
        args = (
            obj.co_argcount,
            obj.co_posonlyargcount,
            obj.co_kwonlyargcount,
            obj.co_nlocals,
            obj.co_framesize,
            obj.co_ndefaultargs,
            obj.co_nmeta,
            obj.co_flags,
            obj.co_code,
            obj.co_consts,
            obj.co_varnames,
            obj.co_filename,
            obj.co_name,
            obj.co_firstlineno,
            obj.co_lnotab,
            obj.co_exc_handlers,
            obj.co_jump_table,
            obj.co_freevars,
            obj.co_cellvars,
            obj.co_free2reg,
            obj.co_cell2reg,
        )
    else:
        # Backward compat for 3.8 and 3.9
        args = (
            obj.co_argcount,
            obj.co_posonlyargcount,
            obj.co_kwonlyargcount,
            obj.co_nlocals,
            obj.co_stacksize,
            obj.co_flags,
            obj.co_code,
            obj.co_consts,
            obj.co_names,
            obj.co_varnames,
            obj.co_filename,
            obj.co_name,
            obj.co_firstlineno,
            obj.co_lnotab,
            obj.co_freevars,
            obj.co_cellvars,
        )
    return types.CodeType, args


def _cell_reduce(obj):
    """Cell (containing values of a function's free variables) reducer."""
    try:
        obj.cell_contents
    except ValueError:  # cell is empty
        return _make_empty_cell, ()
    else:
        return _make_cell, (obj.cell_contents,)


def _classmethod_reduce(obj):
    orig_func = obj.__func__
    return type(obj), (orig_func,)


def _file_reduce(obj):
    """Save a file."""
    import io

    if not hasattr(obj, "name") or not hasattr(obj, "mode"):
        raise pickle.PicklingError(
            "Cannot pickle files that do not map to an actual file"
        )
    if obj is sys.stdout:
        return getattr, (sys, "stdout")
    if obj is sys.stderr:
        return getattr, (sys, "stderr")
    if obj is sys.stdin:
        raise pickle.PicklingError("Cannot pickle standard input")
    if obj.closed:
        raise pickle.PicklingError("Cannot pickle closed files")
    if hasattr(obj, "isatty") and obj.isatty():
        raise pickle.PicklingError("Cannot pickle files that map to tty objects")
    if "r" not in obj.mode and "+" not in obj.mode:
        raise pickle.PicklingError(
            "Cannot pickle files that are not opened for reading: %s" % obj.mode
        )

    name = obj.name

    retval = io.StringIO()

    try:
        # Read the whole file
        curloc = obj.tell()
        obj.seek(0)
        contents = obj.read()
        obj.seek(curloc)
    except OSError as e:
        raise pickle.PicklingError(
            "Cannot pickle file %s as it cannot be read" % name
        ) from e
    retval.write(contents)
    retval.seek(curloc)

    retval.name = name
    return _file_reconstructor, (retval,)


def _getset_descriptor_reduce(obj):
    return getattr, (obj.__objclass__, obj.__name__)


def _mappingproxy_reduce(obj):
    return types.MappingProxyType, (dict(obj),)


def _memoryview_reduce(obj):
    return bytes, (obj.tobytes(),)


def _module_reduce(obj):
    if _should_pickle_by_reference(obj):
        return subimport, (obj.__name__,)
    else:
        # Some external libraries can populate the "__builtins__" entry of a
        # module's `__dict__` with unpicklable objects (see #316). For that
        # reason, we do not attempt to pickle the "__builtins__" entry, and
        # restore a default value for it at unpickling time.
        state = obj.__dict__.copy()
        state.pop("__builtins__", None)
        return dynamic_subimport, (obj.__name__, state)


def _method_reduce(obj):
    return (types.MethodType, (obj.__func__, obj.__self__))


def _logger_reduce(obj):
    return logging.getLogger, (obj.name,)


def _root_logger_reduce(obj):
    return logging.getLogger, ()


def _property_reduce(obj):
    return property, (obj.fget, obj.fset, obj.fdel, obj.__doc__)


def _weakset_reduce(obj):
    return weakref.WeakSet, (list(obj),)


def _dynamic_class_reduce(obj):
    """Save a class that can't be referenced as a module attribute.

    This method is used to serialize classes that are defined inside
    functions, or that otherwise can't be serialized as attribute lookups
    from importable modules.
    """
    if Enum is not None and issubclass(obj, Enum):
        return (
            _make_skeleton_enum,
            _enum_getnewargs(obj),
            _enum_getstate(obj),
            None,
            None,
            _class_setstate,
        )
    else:
        return (
            _make_skeleton_class,
            _class_getnewargs(obj),
            _class_getstate(obj),
            None,
            None,
            _class_setstate,
        )


def _class_reduce(obj):
    """Select the reducer depending on the dynamic nature of the class obj."""
    if obj is type(None):  # noqa
        return type, (None,)
    elif obj is type(Ellipsis):
        return type, (Ellipsis,)
    elif obj is type(NotImplemented):
        return type, (NotImplemented,)
    elif obj in _BUILTIN_TYPE_NAMES:
        return _builtin_type, (_BUILTIN_TYPE_NAMES[obj],)
    elif not _should_pickle_by_reference(obj):
        return _dynamic_class_reduce(obj)
    return NotImplemented


def _dict_keys_reduce(obj):
    # Safer not to ship the full dict as sending the rest might
    # be unintended and could potentially cause leaking of
    # sensitive information
    return _make_dict_keys, (list(obj),)


def _dict_values_reduce(obj):
    # Safer not to ship the full dict as sending the rest might
    # be unintended and could potentially cause leaking of
    # sensitive information
    return _make_dict_values, (list(obj),)


def _dict_items_reduce(obj):
    return _make_dict_items, (dict(obj),)


def _odict_keys_reduce(obj):
    # Safer not to ship the full dict as sending the rest might
    # be unintended and could potentially cause leaking of
    # sensitive information
    return _make_dict_keys, (list(obj), True)


def _odict_values_reduce(obj):
    # Safer not to ship the full dict as sending the rest might
    # be unintended and could potentially cause leaking of
    # sensitive information
    return _make_dict_values, (list(obj), True)


def _odict_items_reduce(obj):
    return _make_dict_items, (dict(obj), True)


def _dataclass_field_base_reduce(obj):
    return _get_dataclass_field_type_sentinel, (obj.name,)


# COLLECTIONS OF OBJECTS STATE SETTERS
# ------------------------------------
# state setters are called at unpickling time, once the object is created and
# it has to be updated to how it was at unpickling time.


def _function_setstate(obj, state):
    """Update the state of a dynamic function.

    As __closure__ and __globals__ are readonly attributes of a function, we
    cannot rely on the native setstate routine of pickle.load_build, that calls
    setattr on items of the slotstate. Instead, we have to modify them inplace.
    """
    state, slotstate = state
    obj.__dict__.update(state)

    obj_globals = slotstate.pop("__globals__")
    obj_closure = slotstate.pop("__closure__")
    # _cloudpickle_subimports is a set of submodules that must be loaded for
    # the pickled function to work correctly at unpickling time. Now that these
    # submodules are depickled (hence imported), they can be removed from the
    # object's state (the object state only served as a reference holder to
    # these submodules)
    slotstate.pop("_cloudpickle_submodules")

    obj.__globals__.update(obj_globals)
    obj.__globals__["__builtins__"] = __builtins__

    if obj_closure is not None:
        for i, cell in enumerate(obj_closure):
            try:
                value = cell.cell_contents
            except ValueError:  # cell is empty
                continue
            obj.__closure__[i].cell_contents = value

    for k, v in slotstate.items():
        setattr(obj, k, v)


def _class_setstate(obj, state):
    state, slotstate = state
    registry = None
    for attrname, attr in state.items():
        if attrname == "_abc_impl":
            registry = attr
        else:
            setattr(obj, attrname, attr)
    if registry is not None:
        for subclass in registry:
            obj.register(subclass)

    return obj


# COLLECTION OF DATACLASS UTILITIES
# ---------------------------------
# There are some internal sentinel values whose identity must be preserved when
# unpickling dataclass fields. Each sentinel value has a unique name that we can
# use to retrieve its identity at unpickling time.


_DATACLASSE_FIELD_TYPE_SENTINELS = {
    dataclasses._FIELD.name: dataclasses._FIELD,
    dataclasses._FIELD_CLASSVAR.name: dataclasses._FIELD_CLASSVAR,
    dataclasses._FIELD_INITVAR.name: dataclasses._FIELD_INITVAR,
}


def _get_dataclass_field_type_sentinel(name):
    return _DATACLASSE_FIELD_TYPE_SENTINELS[name]


class Pickler(pickle.Pickler):
    # set of reducers defined and used by cloudpickle (private)
    _dispatch_table = {}
    _dispatch_table[classmethod] = _classmethod_reduce
    _dispatch_table[io.TextIOWrapper] = _file_reduce
    _dispatch_table[logging.Logger] = _logger_reduce
    _dispatch_table[logging.RootLogger] = _root_logger_reduce
    _dispatch_table[memoryview] = _memoryview_reduce
    _dispatch_table[property] = _property_reduce
    _dispatch_table[staticmethod] = _classmethod_reduce
    _dispatch_table[CellType] = _cell_reduce
    _dispatch_table[types.CodeType] = _code_reduce
    _dispatch_table[types.GetSetDescriptorType] = _getset_descriptor_reduce
    _dispatch_table[types.ModuleType] = _module_reduce
    _dispatch_table[types.MethodType] = _method_reduce
    _dispatch_table[types.MappingProxyType] = _mappingproxy_reduce
    _dispatch_table[weakref.WeakSet] = _weakset_reduce
    _dispatch_table[typing.TypeVar] = _typevar_reduce
    _dispatch_table[_collections_abc.dict_keys] = _dict_keys_reduce
    _dispatch_table[_collections_abc.dict_values] = _dict_values_reduce
    _dispatch_table[_collections_abc.dict_items] = _dict_items_reduce
    _dispatch_table[type(OrderedDict().keys())] = _odict_keys_reduce
    _dispatch_table[type(OrderedDict().values())] = _odict_values_reduce
    _dispatch_table[type(OrderedDict().items())] = _odict_items_reduce
    _dispatch_table[abc.abstractmethod] = _classmethod_reduce
    _dispatch_table[abc.abstractclassmethod] = _classmethod_reduce
    _dispatch_table[abc.abstractstaticmethod] = _classmethod_reduce
    _dispatch_table[abc.abstractproperty] = _property_reduce
    _dispatch_table[dataclasses._FIELD_BASE] = _dataclass_field_base_reduce

    dispatch_table = ChainMap(_dispatch_table, copyreg.dispatch_table)

    # function reducers are defined as instance methods of cloudpickle.Pickler
    # objects, as they rely on a cloudpickle.Pickler attribute (globals_ref)
    def _dynamic_function_reduce(self, func):
        """Reduce a function that is not pickleable via attribute lookup."""
        newargs = self._function_getnewargs(func)
        state = _function_getstate(func)
        return (_make_function, newargs, state, None, None, _function_setstate)

    def _function_reduce(self, obj):
        """Reducer for function objects.

        If obj is a top-level attribute of a file-backed module, this reducer
        returns NotImplemented, making the cloudpickle.Pickler fall back to
        traditional pickle.Pickler routines to save obj. Otherwise, it reduces
        obj using a custom cloudpickle reducer designed specifically to handle
        dynamic functions.
        """
        if _should_pickle_by_reference(obj):
            return NotImplemented
        else:
            return self._dynamic_function_reduce(obj)

    def _function_getnewargs(self, func):
        code = func.__code__

        # base_globals represents the future global namespace of func at
        # unpickling time. Looking it up and storing it in
        # cloudpickle.Pickler.globals_ref allow functions sharing the same
        # globals at pickling time to also share them once unpickled, at one
        # condition: since globals_ref is an attribute of a cloudpickle.Pickler
        # instance, and that a new cloudpickle.Pickler is created each time
        # cloudpickle.dump or cloudpickle.dumps is called, functions also need
        # to be saved within the same invocation of
        # cloudpickle.dump/cloudpickle.dumps (for example:
        # cloudpickle.dumps([f1, f2])). There is no such limitation when using
        # cloudpickle.Pickler.dump, as long as the multiple invocations are
        # bound to the same cloudpickle.Pickler instance.
        base_globals = self.globals_ref.setdefault(id(func.__globals__), {})

        if base_globals == {}:
            # Add module attributes used to resolve relative imports
            # instructions inside func.
            for k in ["__package__", "__name__", "__path__", "__file__"]:
                if k in func.__globals__:
                    base_globals[k] = func.__globals__[k]

        # Do not bind the free variables before the function is created to
        # avoid infinite recursion.
        if func.__closure__ is None:
            closure = None
        else:
            closure = tuple(_make_empty_cell() for _ in range(len(code.co_freevars)))

        return code, base_globals, None, None, closure

    def dump(self, obj):
        try:
            return super().dump(obj)
        except RuntimeError as e:
            if len(e.args) > 0 and "recursion" in e.args[0]:
                msg = "Could not pickle object as excessively deep recursion required."
                raise pickle.PicklingError(msg) from e
            else:
                raise

    def __init__(self, file, protocol=None, buffer_callback=None):
        if protocol is None:
            protocol = DEFAULT_PROTOCOL
        super().__init__(file, protocol=protocol, buffer_callback=buffer_callback)
        # map functions __globals__ attribute ids, to ensure that functions
        # sharing the same global namespace at pickling time also share
        # their global namespace at unpickling time.
        self.globals_ref = {}
        self.proto = int(protocol)

    if not PYPY:
        # pickle.Pickler is the C implementation of the CPython pickler and
        # therefore we rely on reduce_override method to customize the pickler
        # behavior.

        # `cloudpickle.Pickler.dispatch` is only left for backward
        # compatibility - note that when using protocol 5,
        # `cloudpickle.Pickler.dispatch` is not an extension of
        # `pickle._Pickler.dispatch` dictionary, because `cloudpickle.Pickler`
        # subclasses the C-implemented `pickle.Pickler`, which does not expose
        # a `dispatch` attribute.  Earlier versions of `cloudpickle.Pickler`
        # used `cloudpickle.Pickler.dispatch` as a class-level attribute
        # storing all reducers implemented by cloudpickle, but the attribute
        # name was not a great choice given because it would collide with a
        # similarly named attribute in the pure-Python `pickle._Pickler`
        # implementation in the standard library.
        dispatch = dispatch_table

        # Implementation of the reducer_override callback, in order to
        # efficiently serialize dynamic functions and classes by subclassing
        # the C-implemented `pickle.Pickler`.
        # TODO: decorrelate reducer_override (which is tied to CPython's
        # implementation - would it make sense to backport it to pypy? - and
        # pickle's protocol 5 which is implementation agnostic. Currently, the
        # availability of both notions coincide on CPython's pickle, but it may
        # not be the case anymore when pypy implements protocol 5.

        def reducer_override(self, obj):
            """Type-agnostic reducing callback for function and classes.

            For performance reasons, subclasses of the C `pickle.Pickler` class
            cannot register custom reducers for functions and classes in the
            dispatch_table attribute. Reducers for such types must instead
            implemented via the special `reducer_override` method.

            Note that this method will be called for any object except a few
            builtin-types (int, lists, dicts etc.), which differs from reducers
            in the Pickler's dispatch_table, each of them being invoked for
            objects of a specific type only.

            This property comes in handy for classes: although most classes are
            instances of the ``type`` metaclass, some of them can be instances
            of other custom metaclasses (such as enum.EnumMeta for example). In
            particular, the metaclass will likely not be known in advance, and
            thus cannot be special-cased using an entry in the dispatch_table.
            reducer_override, among other things, allows us to register a
            reducer that will be called for any class, independently of its
            type.

            Notes:

            * reducer_override has the priority over dispatch_table-registered
            reducers.
            * reducer_override can be used to fix other limitations of
              cloudpickle for other types that suffered from type-specific
              reducers, such as Exceptions. See
              https://github.com/cloudpipe/cloudpickle/issues/248
            """
            t = type(obj)
            try:
                is_anyclass = issubclass(t, type)
            except TypeError:  # t is not a class (old Boost; see SF #502085)
                is_anyclass = False

            if is_anyclass:
                return _class_reduce(obj)
            elif isinstance(obj, types.FunctionType):
                return self._function_reduce(obj)
            else:
                # fallback to save_global, including the Pickler's
                # dispatch_table
                return NotImplemented

    else:
        # When reducer_override is not available, hack the pure-Python
        # Pickler's types.FunctionType and type savers. Note: the type saver
        # must override Pickler.save_global, because pickle.py contains a
        # hard-coded call to save_global when pickling meta-classes.
        dispatch = pickle.Pickler.dispatch.copy()

        def _save_reduce_pickle5(
            self,
            func,
            args,
            state=None,
            listitems=None,
            dictitems=None,
            state_setter=None,
            obj=None,
        ):
            save = self.save
            write = self.write
            self.save_reduce(
                func,
                args,
                state=None,
                listitems=listitems,
                dictitems=dictitems,
                obj=obj,
            )
            # backport of the Python 3.8 state_setter pickle operations
            save(state_setter)
            save(obj)  # simple BINGET opcode as obj is already memoized.
            save(state)
            write(pickle.TUPLE2)
            # Trigger a state_setter(obj, state) function call.
            write(pickle.REDUCE)
            # The purpose of state_setter is to carry-out an
            # inplace modification of obj. We do not care about what the
            # method might return, so its output is eventually removed from
            # the stack.
            write(pickle.POP)

        def save_global(self, obj, name=None, pack=struct.pack):
            """Main dispatch method.

            The name of this method is somewhat misleading: all types get
            dispatched here.
            """
            if obj is type(None):  # noqa
                return self.save_reduce(type, (None,), obj=obj)
            elif obj is type(Ellipsis):
                return self.save_reduce(type, (Ellipsis,), obj=obj)
            elif obj is type(NotImplemented):
                return self.save_reduce(type, (NotImplemented,), obj=obj)
            elif obj in _BUILTIN_TYPE_NAMES:
                return self.save_reduce(
                    _builtin_type, (_BUILTIN_TYPE_NAMES[obj],), obj=obj
                )

            if name is not None:
                super().save_global(obj, name=name)
            elif not _should_pickle_by_reference(obj, name=name):
                self._save_reduce_pickle5(*_dynamic_class_reduce(obj), obj=obj)
            else:
                super().save_global(obj, name=name)

        dispatch[type] = save_global

        def save_function(self, obj, name=None):
            """Registered with the dispatch to handle all function types.

            Determines what kind of function obj is (e.g. lambda, defined at
            interactive prompt, etc) and handles the pickling appropriately.
            """
            if _should_pickle_by_reference(obj, name=name):
                return super().save_global(obj, name=name)
            elif PYPY and isinstance(obj.__code__, builtin_code_type):
                return self.save_pypy_builtin_func(obj)
            else:
                return self._save_reduce_pickle5(
                    *self._dynamic_function_reduce(obj), obj=obj
                )

        def save_pypy_builtin_func(self, obj):
            """Save pypy equivalent of builtin functions.

            PyPy does not have the concept of builtin-functions. Instead,
            builtin-functions are simple function instances, but with a
            builtin-code attribute.
            Most of the time, builtin functions should be pickled by attribute.
            But PyPy has flaky support for __qualname__, so some builtin
            functions such as float.__new__ will be classified as dynamic. For
            this reason only, we created this special routine. Because
            builtin-functions are not expected to have closure or globals,
            there is no additional hack (compared the one already implemented
            in pickle) to protect ourselves from reference cycles. A simple
            (reconstructor, newargs, obj.__dict__) tuple is save_reduced.  Note
            also that PyPy improved their support for __qualname__ in v3.6, so
            this routing should be removed when cloudpickle supports only PyPy
            3.6 and later.
            """
            rv = (
                types.FunctionType,
                (obj.__code__, {}, obj.__name__, obj.__defaults__, obj.__closure__),
                obj.__dict__,
            )
            self.save_reduce(*rv, obj=obj)

        dispatch[types.FunctionType] = save_function


# Shorthands similar to pickle.dump/pickle.dumps


def dump(obj, file, protocol=None, buffer_callback=None):
    """Serialize obj as bytes streamed into file

    protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
    pickle.HIGHEST_PROTOCOL. This setting favors maximum communication
    speed between processes running the same Python version.

    Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
    compatibility with older versions of Python (although this is not always
    guaranteed to work because cloudpickle relies on some internal
    implementation details that can change from one Python version to the
    next).
    """
    Pickler(file, protocol=protocol, buffer_callback=buffer_callback).dump(obj)


def dumps(obj, protocol=None, buffer_callback=None):
    """Serialize obj as a string of bytes allocated in memory

    protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
    pickle.HIGHEST_PROTOCOL. This setting favors maximum communication
    speed between processes running the same Python version.

    Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
    compatibility with older versions of Python (although this is not always
    guaranteed to work because cloudpickle relies on some internal
    implementation details that can change from one Python version to the
    next).
    """
    with io.BytesIO() as file:
        cp = Pickler(file, protocol=protocol, buffer_callback=buffer_callback)
        cp.dump(obj)
        return file.getvalue()


# Include pickles unloading functions in this namespace for convenience.
load, loads = pickle.load, pickle.loads

# Backward compat alias.
CloudPickler = Pickler