File size: 3,100 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""Wrapper for rescaling actions to within a max and min action."""
from typing import Union

import numpy as np

import gym
from gym import spaces


class RescaleAction(gym.ActionWrapper):
    """Affinely rescales the continuous action space of the environment to the range [min_action, max_action].

    The base environment :attr:`env` must have an action space of type :class:`spaces.Box`. If :attr:`min_action`
    or :attr:`max_action` are numpy arrays, the shape must match the shape of the environment's action space.

    Example:
        >>> import gym
        >>> env = gym.make('BipedalWalker-v3')
        >>> env.action_space
        Box(-1.0, 1.0, (4,), float32)
        >>> min_action = -0.5
        >>> max_action = np.array([0.0, 0.5, 1.0, 0.75])
        >>> env = RescaleAction(env, min_action=min_action, max_action=max_action)
        >>> env.action_space
        Box(-0.5, [0.   0.5  1.   0.75], (4,), float32)
        >>> RescaleAction(env, min_action, max_action).action_space == gym.spaces.Box(min_action, max_action)
        True
    """

    def __init__(
        self,
        env: gym.Env,
        min_action: Union[float, int, np.ndarray],
        max_action: Union[float, int, np.ndarray],
    ):
        """Initializes the :class:`RescaleAction` wrapper.

        Args:
            env (Env): The environment to apply the wrapper
            min_action (float, int or np.ndarray): The min values for each action. This may be a numpy array or a scalar.
            max_action (float, int or np.ndarray): The max values for each action. This may be a numpy array or a scalar.
        """
        assert isinstance(
            env.action_space, spaces.Box
        ), f"expected Box action space, got {type(env.action_space)}"
        assert np.less_equal(min_action, max_action).all(), (min_action, max_action)

        super().__init__(env)
        self.min_action = (
            np.zeros(env.action_space.shape, dtype=env.action_space.dtype) + min_action
        )
        self.max_action = (
            np.zeros(env.action_space.shape, dtype=env.action_space.dtype) + max_action
        )
        self.action_space = spaces.Box(
            low=min_action,
            high=max_action,
            shape=env.action_space.shape,
            dtype=env.action_space.dtype,
        )

    def action(self, action):
        """Rescales the action affinely from  [:attr:`min_action`, :attr:`max_action`] to the action space of the base environment, :attr:`env`.

        Args:
            action: The action to rescale

        Returns:
            The rescaled action
        """
        assert np.all(np.greater_equal(action, self.min_action)), (
            action,
            self.min_action,
        )
        assert np.all(np.less_equal(action, self.max_action)), (action, self.max_action)
        low = self.env.action_space.low
        high = self.env.action_space.high
        action = low + (high - low) * (
            (action - self.min_action) / (self.max_action - self.min_action)
        )
        action = np.clip(action, low, high)
        return action