File size: 1,671 Bytes
e11e4fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np


def discount_rewards(r, gamma=0.99, value_next=0.0):
    """
    Computes discounted sum of future rewards for use in updating value estimate.
    :param r: List of rewards.
    :param gamma: Discount factor.
    :param value_next: T+1 value estimate for returns calculation.
    :return: discounted sum of future rewards as list.
    """
    discounted_r = np.zeros_like(r)
    running_add = value_next
    for t in reversed(range(0, r.size)):
        running_add = running_add * gamma + r[t]
        discounted_r[t] = running_add
    return discounted_r


def get_gae(rewards, value_estimates, value_next=0.0, gamma=0.99, lambd=0.95):
    """
    Computes generalized advantage estimate for use in updating policy.
    :param rewards: list of rewards for time-steps t to T.
    :param value_next: Value estimate for time-step T+1.
    :param value_estimates: list of value estimates for time-steps t to T.
    :param gamma: Discount factor.
    :param lambd: GAE weighing factor.
    :return: list of advantage estimates for time-steps t to T.
    """
    value_estimates = np.append(value_estimates, value_next)
    delta_t = rewards + gamma * value_estimates[1:] - value_estimates[:-1]
    advantage = discount_rewards(r=delta_t, gamma=gamma * lambd)
    return advantage


def lambda_return(r, value_estimates, gamma=0.99, lambd=0.8, value_next=0.0):
    returns = np.zeros_like(r)
    returns[-1] = r[-1] + gamma * value_next
    for t in reversed(range(0, r.size - 1)):
        returns[t] = (
            gamma * lambd * returns[t + 1]
            + r[t]
            + (1 - lambd) * gamma * value_estimates[t + 1]
        )
    return returns