File size: 4,698 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""Modularity matrix of graphs.
"""
import networkx as nx
from networkx.utils import not_implemented_for

__all__ = ["modularity_matrix", "directed_modularity_matrix"]


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch(edge_attrs="weight")
def modularity_matrix(G, nodelist=None, weight=None):
    r"""Returns the modularity matrix of G.

    The modularity matrix is the matrix B = A - <A>, where A is the adjacency
    matrix and <A> is the average adjacency matrix, assuming that the graph
    is described by the configuration model.

    More specifically, the element B_ij of B is defined as

    .. math::
        A_{ij} - {k_i k_j \over 2 m}

    where k_i is the degree of node i, and where m is the number of edges
    in the graph. When weight is set to a name of an attribute edge, Aij, k_i,
    k_j and m are computed using its value.

    Parameters
    ----------
    G : Graph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default=None)
       The edge attribute that holds the numerical value used for
       the edge weight.  If None then all edge weights are 1.

    Returns
    -------
    B : Numpy array
      The modularity matrix of G.

    Examples
    --------
    >>> k = [3, 2, 2, 1, 0]
    >>> G = nx.havel_hakimi_graph(k)
    >>> B = nx.modularity_matrix(G)


    See Also
    --------
    to_numpy_array
    modularity_spectrum
    adjacency_matrix
    directed_modularity_matrix

    References
    ----------
    .. [1] M. E. J. Newman, "Modularity and community structure in networks",
           Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
    """
    import numpy as np

    if nodelist is None:
        nodelist = list(G)
    A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
    k = A.sum(axis=1)
    m = k.sum() * 0.5
    # Expected adjacency matrix
    X = np.outer(k, k) / (2 * m)

    return A - X


@not_implemented_for("undirected")
@not_implemented_for("multigraph")
@nx._dispatch(edge_attrs="weight")
def directed_modularity_matrix(G, nodelist=None, weight=None):
    """Returns the directed modularity matrix of G.

    The modularity matrix is the matrix B = A - <A>, where A is the adjacency
    matrix and <A> is the expected adjacency matrix, assuming that the graph
    is described by the configuration model.

    More specifically, the element B_ij of B is defined as

    .. math::
        B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m

    where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree
    of node j, with m the number of edges in the graph. When weight is set
    to a name of an attribute edge, Aij, k_i, k_j and m are computed using
    its value.

    Parameters
    ----------
    G : DiGraph
       A NetworkX DiGraph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default=None)
       The edge attribute that holds the numerical value used for
       the edge weight.  If None then all edge weights are 1.

    Returns
    -------
    B : Numpy array
      The modularity matrix of G.

    Examples
    --------
    >>> G = nx.DiGraph()
    >>> G.add_edges_from(
    ...     (
    ...         (1, 2),
    ...         (1, 3),
    ...         (3, 1),
    ...         (3, 2),
    ...         (3, 5),
    ...         (4, 5),
    ...         (4, 6),
    ...         (5, 4),
    ...         (5, 6),
    ...         (6, 4),
    ...     )
    ... )
    >>> B = nx.directed_modularity_matrix(G)


    Notes
    -----
    NetworkX defines the element A_ij of the adjacency matrix as 1 if there
    is a link going from node i to node j. Leicht and Newman use the opposite
    definition. This explains the different expression for B_ij.

    See Also
    --------
    to_numpy_array
    modularity_spectrum
    adjacency_matrix
    modularity_matrix

    References
    ----------
    .. [1] E. A. Leicht, M. E. J. Newman,
        "Community structure in directed networks",
        Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
    """
    import numpy as np

    if nodelist is None:
        nodelist = list(G)
    A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
    k_in = A.sum(axis=0)
    k_out = A.sum(axis=1)
    m = k_in.sum()
    # Expected adjacency matrix
    X = np.outer(k_out, k_in) / m

    return A - X