File size: 12,988 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# pylint: disable-msg=W0611, W0612, W0511,R0201
"""Tests suite for MaskedArray & subclassing.



:author: Pierre Gerard-Marchant

:contact: pierregm_at_uga_dot_edu

:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $



"""
import numpy as np
from numpy.testing import assert_, assert_raises
from numpy.ma.testutils import assert_equal
from numpy.ma.core import (
    array, arange, masked, MaskedArray, masked_array, log, add, hypot,
    divide, asarray, asanyarray, nomask
    )
# from numpy.ma.core import (

def assert_startswith(a, b):
    # produces a better error message than assert_(a.startswith(b))
    assert_equal(a[:len(b)], b)

class SubArray(np.ndarray):
    # Defines a generic np.ndarray subclass, that stores some metadata
    # in the  dictionary `info`.
    def __new__(cls,arr,info={}):
        x = np.asanyarray(arr).view(cls)
        x.info = info.copy()
        return x

    def __array_finalize__(self, obj):
        if callable(getattr(super(), '__array_finalize__', None)):
            super().__array_finalize__(obj)
        self.info = getattr(obj, 'info', {}).copy()
        return

    def __add__(self, other):
        result = super().__add__(other)
        result.info['added'] = result.info.get('added', 0) + 1
        return result

    def __iadd__(self, other):
        result = super().__iadd__(other)
        result.info['iadded'] = result.info.get('iadded', 0) + 1
        return result


subarray = SubArray


class SubMaskedArray(MaskedArray):
    """Pure subclass of MaskedArray, keeping some info on subclass."""
    def __new__(cls, info=None, **kwargs):
        obj = super().__new__(cls, **kwargs)
        obj._optinfo['info'] = info
        return obj


class MSubArray(SubArray, MaskedArray):

    def __new__(cls, data, info={}, mask=nomask):
        subarr = SubArray(data, info)
        _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
        _data.info = subarr.info
        return _data

    @property
    def _series(self):
        _view = self.view(MaskedArray)
        _view._sharedmask = False
        return _view

msubarray = MSubArray


# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
# setting to non-class values (and thus np.ma.core.masked_print_option)
# and overrides __array_wrap__, updating the info dict, to check that this
# doesn't get destroyed by MaskedArray._update_from.  But this one also needs
# its own iterator...
class CSAIterator:
    """

    Flat iterator object that uses its own setter/getter

    (works around ndarray.flat not propagating subclass setters/getters

    see https://github.com/numpy/numpy/issues/4564)

    roughly following MaskedIterator

    """
    def __init__(self, a):
        self._original = a
        self._dataiter = a.view(np.ndarray).flat

    def __iter__(self):
        return self

    def __getitem__(self, indx):
        out = self._dataiter.__getitem__(indx)
        if not isinstance(out, np.ndarray):
            out = out.__array__()
        out = out.view(type(self._original))
        return out

    def __setitem__(self, index, value):
        self._dataiter[index] = self._original._validate_input(value)

    def __next__(self):
        return next(self._dataiter).__array__().view(type(self._original))


class ComplicatedSubArray(SubArray):

    def __str__(self):
        return f'myprefix {self.view(SubArray)} mypostfix'

    def __repr__(self):
        # Return a repr that does not start with 'name('
        return f'<{self.__class__.__name__} {self}>'

    def _validate_input(self, value):
        if not isinstance(value, ComplicatedSubArray):
            raise ValueError("Can only set to MySubArray values")
        return value

    def __setitem__(self, item, value):
        # validation ensures direct assignment with ndarray or
        # masked_print_option will fail
        super().__setitem__(item, self._validate_input(value))

    def __getitem__(self, item):
        # ensure getter returns our own class also for scalars
        value = super().__getitem__(item)
        if not isinstance(value, np.ndarray):  # scalar
            value = value.__array__().view(ComplicatedSubArray)
        return value

    @property
    def flat(self):
        return CSAIterator(self)

    @flat.setter
    def flat(self, value):
        y = self.ravel()
        y[:] = value

    def __array_wrap__(self, obj, context=None):
        obj = super().__array_wrap__(obj, context)
        if context is not None and context[0] is np.multiply:
            obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1

        return obj


class TestSubclassing:
    # Test suite for masked subclasses of ndarray.

    def setup(self):
        x = np.arange(5, dtype='float')
        mx = msubarray(x, mask=[0, 1, 0, 0, 0])
        self.data = (x, mx)

    def test_data_subclassing(self):
        # Tests whether the subclass is kept.
        x = np.arange(5)
        m = [0, 0, 1, 0, 0]
        xsub = SubArray(x)
        xmsub = masked_array(xsub, mask=m)
        assert_(isinstance(xmsub, MaskedArray))
        assert_equal(xmsub._data, xsub)
        assert_(isinstance(xmsub._data, SubArray))

    def test_maskedarray_subclassing(self):
        # Tests subclassing MaskedArray
        (x, mx) = self.data
        assert_(isinstance(mx._data, subarray))

    def test_masked_unary_operations(self):
        # Tests masked_unary_operation
        (x, mx) = self.data
        with np.errstate(divide='ignore'):
            assert_(isinstance(log(mx), msubarray))
            assert_equal(log(x), np.log(x))

    def test_masked_binary_operations(self):
        # Tests masked_binary_operation
        (x, mx) = self.data
        # Result should be a msubarray
        assert_(isinstance(add(mx, mx), msubarray))
        assert_(isinstance(add(mx, x), msubarray))
        # Result should work
        assert_equal(add(mx, x), mx+x)
        assert_(isinstance(add(mx, mx)._data, subarray))
        assert_(isinstance(add.outer(mx, mx), msubarray))
        assert_(isinstance(hypot(mx, mx), msubarray))
        assert_(isinstance(hypot(mx, x), msubarray))

    def test_masked_binary_operations2(self):
        # Tests domained_masked_binary_operation
        (x, mx) = self.data
        xmx = masked_array(mx.data.__array__(), mask=mx.mask)
        assert_(isinstance(divide(mx, mx), msubarray))
        assert_(isinstance(divide(mx, x), msubarray))
        assert_equal(divide(mx, mx), divide(xmx, xmx))

    def test_attributepropagation(self):
        x = array(arange(5), mask=[0]+[1]*4)
        my = masked_array(subarray(x))
        ym = msubarray(x)
        #
        z = (my+1)
        assert_(isinstance(z, MaskedArray))
        assert_(not isinstance(z, MSubArray))
        assert_(isinstance(z._data, SubArray))
        assert_equal(z._data.info, {})
        #
        z = (ym+1)
        assert_(isinstance(z, MaskedArray))
        assert_(isinstance(z, MSubArray))
        assert_(isinstance(z._data, SubArray))
        assert_(z._data.info['added'] > 0)
        # Test that inplace methods from data get used (gh-4617)
        ym += 1
        assert_(isinstance(ym, MaskedArray))
        assert_(isinstance(ym, MSubArray))
        assert_(isinstance(ym._data, SubArray))
        assert_(ym._data.info['iadded'] > 0)
        #
        ym._set_mask([1, 0, 0, 0, 1])
        assert_equal(ym._mask, [1, 0, 0, 0, 1])
        ym._series._set_mask([0, 0, 0, 0, 1])
        assert_equal(ym._mask, [0, 0, 0, 0, 1])
        #
        xsub = subarray(x, info={'name':'x'})
        mxsub = masked_array(xsub)
        assert_(hasattr(mxsub, 'info'))
        assert_equal(mxsub.info, xsub.info)

    def test_subclasspreservation(self):
        # Checks that masked_array(...,subok=True) preserves the class.
        x = np.arange(5)
        m = [0, 0, 1, 0, 0]
        xinfo = [(i, j) for (i, j) in zip(x, m)]
        xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
        #
        mxsub = masked_array(xsub, subok=False)
        assert_(not isinstance(mxsub, MSubArray))
        assert_(isinstance(mxsub, MaskedArray))
        assert_equal(mxsub._mask, m)
        #
        mxsub = asarray(xsub)
        assert_(not isinstance(mxsub, MSubArray))
        assert_(isinstance(mxsub, MaskedArray))
        assert_equal(mxsub._mask, m)
        #
        mxsub = masked_array(xsub, subok=True)
        assert_(isinstance(mxsub, MSubArray))
        assert_equal(mxsub.info, xsub.info)
        assert_equal(mxsub._mask, xsub._mask)
        #
        mxsub = asanyarray(xsub)
        assert_(isinstance(mxsub, MSubArray))
        assert_equal(mxsub.info, xsub.info)
        assert_equal(mxsub._mask, m)

    def test_subclass_items(self):
        """test that getter and setter go via baseclass"""
        x = np.arange(5)
        xcsub = ComplicatedSubArray(x)
        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
        # getter should  return a ComplicatedSubArray, even for single item
        # first check we wrote ComplicatedSubArray correctly
        assert_(isinstance(xcsub[1], ComplicatedSubArray))
        assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
        assert_(isinstance(xcsub[1:4], ComplicatedSubArray))

        # now that it propagates inside the MaskedArray
        assert_(isinstance(mxcsub[1], ComplicatedSubArray))
        assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
        assert_(mxcsub[0] is masked)
        assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
        assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))

        # also for flattened version (which goes via MaskedIterator)
        assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
        assert_(mxcsub.flat[0] is masked)
        assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))

        # setter should only work with ComplicatedSubArray input
        # first check we wrote ComplicatedSubArray correctly
        assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
        # now that it propagates inside the MaskedArray
        assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
        assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
        mxcsub[1] = xcsub[4]
        mxcsub[1:4] = xcsub[1:4]
        # also for flattened version (which goes via MaskedIterator)
        assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
        assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
        mxcsub.flat[1] = xcsub[4]
        mxcsub.flat[1:4] = xcsub[1:4]

    def test_subclass_nomask_items(self):
        x = np.arange(5)
        xcsub = ComplicatedSubArray(x)
        mxcsub_nomask = masked_array(xcsub)

        assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
        assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))

        assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
        assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))

    def test_subclass_repr(self):
        """test that repr uses the name of the subclass

        and 'array' for np.ndarray"""
        x = np.arange(5)
        mx = masked_array(x, mask=[True, False, True, False, False])
        assert_startswith(repr(mx), 'masked_array')
        xsub = SubArray(x)
        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
        assert_startswith(repr(mxsub), 
            f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')

    def test_subclass_str(self):
        """test str with subclass that has overridden str, setitem"""
        # first without override
        x = np.arange(5)
        xsub = SubArray(x)
        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
        assert_equal(str(mxsub), '[-- 1 -- 3 4]')

        xcsub = ComplicatedSubArray(x)
        assert_raises(ValueError, xcsub.__setitem__, 0,
                      np.ma.core.masked_print_option)
        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
        assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')

    def test_pure_subclass_info_preservation(self):
        # Test that ufuncs and methods conserve extra information consistently;
        # see gh-7122.
        arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
        arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
        diff1 = np.subtract(arr1, arr2)
        assert_('info' in diff1._optinfo)
        assert_(diff1._optinfo['info'] == 'test')
        diff2 = arr1 - arr2
        assert_('info' in diff2._optinfo)
        assert_(diff2._optinfo['info'] == 'test')