Spaces:
Running
Running
File size: 20,985 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# reference python implementations for C ops
import torch
from functorch._C import dim as _C
from . import op_properties
from .batch_tensor import _enable_layers
from .tree_map import tree_flatten, tree_map
DimList = _C.DimList
import operator
from functools import reduce
# use dict to avoid writing C++ bindings for set
pointwise = set(op_properties.pointwise)
def prod(x):
return reduce(operator.mul, x, 1)
def _wrap_dim(d, N, keepdim):
from . import Dim
if isinstance(d, Dim):
assert not keepdim, "cannot preserve first-class dimensions with keepdim=True"
return d
elif d >= 0:
return d - N
else:
return d
def _dims(d, N, keepdim, single_dim):
from . import Dim
if isinstance(d, (Dim, int)):
return ltuple((_wrap_dim(d, N, keepdim),))
assert not single_dim, f"expected a single dimension or int but found: {d}"
return ltuple(_wrap_dim(x, N, keepdim) for x in d)
def _bind_dims_to_size(lhs_size, rhs, lhs_debug):
from . import DimensionMismatchError
not_bound = tuple((i, r) for i, r in enumerate(rhs) if not r.is_bound)
if len(not_bound) == 1:
idx, d = not_bound[0]
rhs_so_far = prod(r.size for r in rhs if r.is_bound)
if lhs_size % rhs_so_far != 0:
rhs_s = tuple("?" if not r.is_bound else str(r.size) for r in rhs)
raise DimensionMismatchError(
f"inferred dimension does not evenly fit into larger dimension: {lhs_size} vs {rhs_s}"
)
new_size = lhs_size // rhs_so_far
d.size = new_size
elif len(not_bound) > 1:
rhs_s = tuple("?" if not r.is_bound else str(r.size) for r in rhs)
raise DimensionMismatchError(
f"cannot infer the size of two dimensions at once: {rhs} with sizes {rhs_s}"
)
else:
rhs_size = prod(r.size for r in rhs)
if lhs_size != rhs_size:
raise DimensionMismatchError(
f"Dimension sizes to do not match ({lhs_size} != {rhs_size}) when matching {lhs_debug} to {rhs}"
)
def _tensor_levels(inp):
from . import _Tensor
if isinstance(inp, _Tensor):
return inp._tensor, llist(inp._levels), inp._has_device
else:
return inp, llist(range(-inp.ndim, 0)), True
def _match_levels(v, from_levels, to_levels):
view = []
permute = []
requires_view = False
size = v.size()
for t in to_levels:
try:
idx = from_levels.index(t)
permute.append(idx)
view.append(size[idx])
except ValueError:
view.append(1)
requires_view = True
if permute != list(range(len(permute))):
v = v.permute(*permute)
if requires_view:
v = v.view(*view)
return v
# make a single dimension positional but do not permute it,
# used to do multi-tensor operators where the dim being acted on
# should not physically move if possible
def _positional_no_permute(self, dim, expand_dim=False):
from . import Tensor
ptensor, levels = self._tensor, llist(self._levels)
try:
idx = levels.index(dim)
except ValueError:
if not expand_dim:
raise
idx = 0
ptensor = ptensor.expand(dim.size, *ptensor.size())
levels.insert(0, 0)
idx_batched = 0
for i in range(idx):
if isinstance(levels[i], int):
levels[i] -= 1
idx_batched += 1
levels[idx] = -idx_batched - 1
return Tensor.from_positional(ptensor, levels, self._has_device), idx_batched
def seq(a, b):
from . import Dim
if isinstance(a, Dim) != isinstance(b, Dim):
return False
if isinstance(a, Dim):
return a is b
else:
return a == b
class isin:
def __contains__(self, item):
for x in self:
if seq(item, x):
return True
return False
def index(self, item):
for i, x in enumerate(self):
if seq(item, x):
return i
raise ValueError
class llist(isin, list):
pass
class ltuple(isin, tuple):
pass
empty_dict = {}
@classmethod
def __torch_function__(self, orig, cls, args, kwargs=empty_dict):
from . import _Tensor, Tensor, TensorLike
from .delayed_mul_tensor import DelayedMulTensor
if orig is torch.Tensor.__mul__:
lhs, rhs = args
if (
isinstance(lhs, _Tensor)
and isinstance(rhs, _Tensor)
and lhs.ndim == 0
and rhs.ndim == 0
):
return DelayedMulTensor(lhs, rhs)
all_dims = llist()
flat_args, unflatten = tree_flatten((args, kwargs))
device_holding_tensor = None
for f in flat_args:
if isinstance(f, _Tensor):
if f._has_device:
device_holding_tensor = f._batchtensor
for d in f.dims:
if d not in all_dims:
all_dims.append(d)
def unwrap(t):
if isinstance(t, _Tensor):
r = t._batchtensor
if device_holding_tensor is not None and not t._has_device:
r = r.to(device=device_holding_tensor.device)
return r
return t
if orig in pointwise:
result_levels = llist()
arg_levels = llist()
to_expand = []
for i, f in enumerate(flat_args):
if isinstance(f, TensorLike):
ptensor, levels, _ = _tensor_levels(f)
if (
isinstance(f, _Tensor)
and not f._has_device
and device_holding_tensor is not None
):
ptensor = ptensor.to(device=device_holding_tensor.device)
flat_args[i] = ptensor
for l in levels:
if l not in result_levels:
result_levels.append(l)
to_expand.append((i, levels))
for i, levels in to_expand:
flat_args[i] = _match_levels(flat_args[i], levels, result_levels)
args, kwargs = unflatten(flat_args)
result = orig(*args, **kwargs)
def wrap(t):
if isinstance(t, TensorLike):
return Tensor.from_positional(
t, result_levels, device_holding_tensor is not None
)
return t
return tree_map(wrap, result)
else:
def wrap(t):
if isinstance(t, TensorLike):
return Tensor.from_batched(t, device_holding_tensor is not None)
return t
with _enable_layers(all_dims):
print(f"batch_tensor for {orig}")
args, kwargs = unflatten(unwrap(f) for f in flat_args)
result = orig(*args, **kwargs)
# print("END", orig)
return tree_map(wrap, result)
def positional(self, *dims):
from . import Dim, DimensionBindError, Tensor
ptensor, levels = self._tensor, llist(self._levels)
flat_dims = llist()
view = []
needs_view = False
ndim = self.ndim
for d in dims:
if isinstance(d, DimList):
flat_dims.extend(d)
view.extend(e.size for e in d)
elif isinstance(d, Dim):
flat_dims.append(d)
view.append(d.size)
elif isinstance(d, int):
d = _wrap_dim(d, ndim, False)
flat_dims.append(d)
view.append(ptensor.size(d))
else:
flat_dims.extend(d)
view.append(prod(e.size for e in d))
needs_view = True
permute = list(range(len(levels)))
nflat = len(flat_dims)
for i, d in enumerate(flat_dims):
try:
idx = levels.index(d)
except ValueError as e:
raise DimensionBindError(
f"tensor of dimensions {self.dims} does not contain dim {d}"
) from e
p = permute[idx]
del levels[idx]
del permute[idx]
levels.insert(i, 0)
permute.insert(i, p)
ptensor = ptensor.permute(*permute)
seen = 0
for i in range(len(levels) - 1, -1, -1):
if isinstance(levels[i], int):
seen += 1
levels[i] = -seen
result = Tensor.from_positional(ptensor, levels, self._has_device)
if needs_view:
result = result.reshape(*view, *result.size()[len(flat_dims) :])
return result
def _contains_dim(input):
from . import Dim
for i in input:
if isinstance(i, Dim):
return True
def expand(self, *sizes):
if not _contains_dim(sizes):
return self.__torch_function__(torch.Tensor.expand, None, (self, *sizes))
dims = sizes
sizes = [d.size for d in dims] + [-1] * self.ndim
self = self.expand(*sizes)
return self[dims]
_not_present = object()
def _getarg(name, offset, args, kwargs, default):
if len(args) > offset:
return args[offset]
return kwargs.get(name, default)
def _patcharg(name, offset, args, kwargs, value):
if len(args) > offset:
args[offset] = value
else:
kwargs[name] = value
def _wrap(
orig, dim_offset=0, keepdim_offset=1, dim_name="dim", single_dim=False, reduce=True
):
from . import Dim, Tensor, TensorLike
def fn(self, *args, **kwargs):
dim = _getarg(dim_name, dim_offset, args, kwargs, _not_present)
if dim is _not_present or (single_dim and not isinstance(dim, Dim)):
with _enable_layers(self.dims):
print(f"dim fallback batch_tensor for {orig}")
return Tensor.from_batched(
orig(self._batchtensor, *args, **kwargs), self._has_device
)
keepdim = (
_getarg("keepdim", keepdim_offset, args, kwargs, False) if reduce else False
)
t, levels = self._tensor, llist(self._levels)
dims = _dims(dim, self._batchtensor.ndim, keepdim, single_dim)
dim_indices = tuple(levels.index(d) for d in dims)
if reduce and not keepdim:
new_levels = [l for i, l in enumerate(levels) if i not in dim_indices]
else:
new_levels = levels
if len(dim_indices) == 1:
dim_indices = dim_indices[
0
] # so that dims that really only take a single argument work...
args = list(args)
_patcharg(dim_name, dim_offset, args, kwargs, dim_indices)
def wrap(t):
if isinstance(t, TensorLike):
return Tensor.from_positional(t, new_levels, self._has_device)
return t
with _enable_layers(new_levels):
print(f"dim used batch_tensor for {orig}")
r = orig(t, *args, **kwargs)
return tree_map(wrap, r)
return fn
def _def(name, *args, **kwargs):
from . import _Tensor
orig = getattr(torch.Tensor, name)
setattr(_Tensor, name, _wrap(orig, *args, **kwargs))
no_slice = slice(None)
_orig_getitem = torch.Tensor.__getitem__
class dim_tracker:
def __init__(self):
self.dims = llist()
self.count = []
def record(self, d):
if d not in self.dims:
self.dims.append(d)
self.count.append(1)
def __getitem__(self, d):
return self.count[self.dims.index(d)]
def t__getitem__(self, input):
from . import _Tensor, Dim, DimensionBindError, DimList, Tensor, TensorLike
# * bail to original example if we have a single non-Dim tensor, or a non-tensor
# * locate ... or an unbound tensor list, and determine its size, bind dim list
# (remember that None does not count to the total dim count)
# * bind simple dims and dim-packs to their sizes, count the number of uses of each dim,
# produce the re-view if needed
# * for each single-use dim index, replace with no_slice and mark that it will be added
# (keep track of whether we have to call super)
# * call super if needed
# * if we have dims to bind, bind them (it will help if we eliminated ... and None before)
# this handles bool indexing handling, as well as some other simple cases.
is_simple = (
not isinstance(input, Dim)
and not isinstance(input, (tuple, list))
and
# WAR for functorch bug where zero time tensors in getitem are not handled correctly.
not (isinstance(input, TensorLike) and input.ndim == 0)
)
if is_simple:
if isinstance(self, _Tensor):
return _Tensor.__torch_function__(_orig_getitem, None, (self, input))
else:
return _orig_getitem(self, input)
# can further optimize this case
if not isinstance(input, tuple):
input = [input]
else:
input = list(input)
dims_indexed = 0
expanding_object = None
dimlists = []
for i, s in enumerate(input):
if s is ... or isinstance(s, DimList) and not s.is_bound:
if expanding_object is not None:
msg = (
"at most one ... or unbound dimension list can exist in indexing list but"
f" found 2 at offsets {i} and {expanding_object}"
)
raise DimensionBindError(msg)
expanding_object = i
if isinstance(s, DimList):
dims_indexed += len(s) if s.is_bound else 0
dimlists.append(i)
elif s is not None and s is not ...:
dims_indexed += 1
ndim = self.ndim
if dims_indexed > ndim:
raise IndexError(
f"at least {dims_indexed} indices were supplied but the tensor only has {ndim} dimensions."
)
if expanding_object is not None:
expanding_ndims = ndim - dims_indexed
obj = input[expanding_object]
if obj is ...:
input[expanding_object : expanding_object + 1] = [
no_slice
] * expanding_ndims
else:
obj.bind_len(expanding_ndims)
# flatten the dimslists into the indexing
for i in reversed(dimlists):
input[i : i + 1] = input[i]
dims_indexed = 0
requires_view = False
size = self.size()
view_sizes = []
dims_seen = dim_tracker()
def add_dims(t):
if not isinstance(t, _Tensor):
return
for d in t.dims:
dims_seen.record(d)
add_dims(self)
dim_packs = []
for i, idx in enumerate(input):
if idx is None:
input[i] = no_slice
view_sizes.append(1)
requires_view = True
else:
sz = size[dims_indexed]
if isinstance(idx, Dim):
idx.size = sz
dims_seen.record(idx)
view_sizes.append(sz)
elif isinstance(idx, (tuple, list)) and idx and isinstance(idx[0], Dim):
for d in idx:
dims_seen.record(idx)
_bind_dims_to_size(sz, idx, f"offset {i}")
view_sizes.extend(d.size for d in idx)
requires_view = True
dim_packs.append(i)
else:
add_dims(idx)
view_sizes.append(sz)
dims_indexed += 1
if requires_view:
self = self.view(*view_sizes)
for i in reversed(dim_packs):
input[i : i + 1] = input[i]
# currenty:
# input is flat, containing either Dim, or Tensor, or something valid for standard indexing
# self may have first-class dims as well.
# to index:
# drop the first class dims from self, they just become direct indices of their positions
# figure out the dimensions of the indexing tensors: union of all the dims in the tensors in the index.
# these dimensions will appear and need to be bound at the first place tensor occures
if isinstance(self, _Tensor):
ptensor_self, levels = self._tensor, list(self._levels)
# indices to ptensor rather than self which has first-class dimensions
input_it = iter(input)
flat_inputs = [next(input_it) if isinstance(l, int) else l for l in levels]
has_device = self._has_device
to_pad = 0
else:
ptensor_self, flat_inputs = self, input
to_pad = ptensor_self.ndim - len(flat_inputs)
has_device = True
result_levels = []
index_levels = []
tensor_insert_point = None
to_expand = {}
requires_getindex = False
for i, inp in enumerate(flat_inputs):
if isinstance(inp, Dim) and dims_seen[inp] == 1:
flat_inputs[i] = no_slice
result_levels.append(inp)
elif isinstance(inp, TensorLike):
requires_getindex = True
if tensor_insert_point is None:
tensor_insert_point = len(result_levels)
ptensor, levels, _ = _tensor_levels(inp)
to_expand[i] = levels
flat_inputs[i] = ptensor
for l in levels:
if l not in index_levels:
index_levels.append(l)
else:
requires_getindex = True
result_levels.append(0)
if tensor_insert_point is not None:
result_levels[tensor_insert_point:tensor_insert_point] = index_levels
for i, levels in to_expand.items():
flat_inputs[i] = _match_levels(flat_inputs[i], levels, index_levels)
if requires_getindex:
result = _orig_getitem(ptensor_self, flat_inputs)
else:
result = ptensor_self
next_positional = -1
if to_pad > 0:
result_levels.extend([0] * to_pad)
for i, r in enumerate(reversed(result_levels)):
if isinstance(r, int):
result_levels[-1 - i] = next_positional
next_positional -= 1
return Tensor.from_positional(result, result_levels, has_device)
# XXX - dim is optional and can be the outer-most dimension...
def stack(tensors, new_dim, dim=0, out=None):
if isinstance(dim, int):
return torch.stack(tensors, dim, out).index(dim, new_dim)
index = None
if out is not None:
out, index = _positional_no_permute(out, dim, expand_dim=True)
ptensors = []
for t in tensors:
pt, pi = _positional_no_permute(t, dim, expand_dim=True)
if index is not None and pi != index:
pt = pt.move_dim(pi, index)
else:
index = pi
ptensors.append(pt)
pr = torch.stack(ptensors, index, out=out)
return pr.index((index, index + 1), (new_dim, dim))
_orig_split = torch.Tensor.split
def split(self, split_size_or_sections, dim=0):
from . import _Tensor, Dim
if isinstance(split_size_or_sections, int) or any(
isinstance(t, int) for t in split_size_or_sections
):
if isinstance(dim, Dim):
raise ValueError(
"when dim is specified as a Dim object, split sizes must also be dimensions."
)
return _orig_split(self, split_size_or_sections, dim=dim)
if isinstance(dim, Dim):
assert isinstance(self, _Tensor), f"Tensor does not have dimension {dim}"
self, dim = _positional_no_permute(self, dim)
size = self.size(dim)
total_bound_size = 0
unbound = []
sizes = []
for i, d in enumerate(split_size_or_sections):
if d.is_bound:
sizes.append(d.size)
total_bound_size += d.size
else:
sizes.append(0)
unbound.append(i)
if unbound:
assert (
total_bound_size <= size
), f"result dimensions are larger than original: {total_bound_size} vs {size} ({split_size_or_sections})"
remaining_size = size - total_bound_size
chunk_size = -(-remaining_size // len(unbound))
for u in unbound:
sz = min(chunk_size, remaining_size)
split_size_or_sections[u].size = sz
sizes[u] = sz
remaining_size -= sz
else:
assert (
total_bound_size == size
), f"result dimensions do not match original: {total_bound_size} vs {size} ({split_size_or_sections})"
return tuple(
t.index(dim, d)
for d, t in zip(split_size_or_sections, _orig_split(self, sizes, dim=dim))
)
|