Spaces:
Running
Running
File size: 9,826 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
"""
http://incompleteideas.net/MountainCar/MountainCar1.cp
permalink: https://perma.cc/6Z2N-PFWC
"""
import math
from typing import Optional
import numpy as np
import gym
from gym import spaces
from gym.envs.classic_control import utils
from gym.error import DependencyNotInstalled
class MountainCarEnv(gym.Env):
"""
### Description
The Mountain Car MDP is a deterministic MDP that consists of a car placed stochastically
at the bottom of a sinusoidal valley, with the only possible actions being the accelerations
that can be applied to the car in either direction. The goal of the MDP is to strategically
accelerate the car to reach the goal state on top of the right hill. There are two versions
of the mountain car domain in gym: one with discrete actions and one with continuous.
This version is the one with discrete actions.
This MDP first appeared in [Andrew Moore's PhD Thesis (1990)](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf)
```
@TECHREPORT{Moore90efficientmemory-based,
author = {Andrew William Moore},
title = {Efficient Memory-based Learning for Robot Control},
institution = {University of Cambridge},
year = {1990}
}
```
### Observation Space
The observation is a `ndarray` with shape `(2,)` where the elements correspond to the following:
| Num | Observation | Min | Max | Unit |
|-----|--------------------------------------|------|-----|--------------|
| 0 | position of the car along the x-axis | -Inf | Inf | position (m) |
| 1 | velocity of the car | -Inf | Inf | position (m) |
### Action Space
There are 3 discrete deterministic actions:
| Num | Observation | Value | Unit |
|-----|-------------------------|-------|--------------|
| 0 | Accelerate to the left | Inf | position (m) |
| 1 | Don't accelerate | Inf | position (m) |
| 2 | Accelerate to the right | Inf | position (m) |
### Transition Dynamics:
Given an action, the mountain car follows the following transition dynamics:
*velocity<sub>t+1</sub> = velocity<sub>t</sub> + (action - 1) * force - cos(3 * position<sub>t</sub>) * gravity*
*position<sub>t+1</sub> = position<sub>t</sub> + velocity<sub>t+1</sub>*
where force = 0.001 and gravity = 0.0025. The collisions at either end are inelastic with the velocity set to 0
upon collision with the wall. The position is clipped to the range `[-1.2, 0.6]` and
velocity is clipped to the range `[-0.07, 0.07]`.
### Reward:
The goal is to reach the flag placed on top of the right hill as quickly as possible, as such the agent is
penalised with a reward of -1 for each timestep.
### Starting State
The position of the car is assigned a uniform random value in *[-0.6 , -0.4]*.
The starting velocity of the car is always assigned to 0.
### Episode End
The episode ends if either of the following happens:
1. Termination: The position of the car is greater than or equal to 0.5 (the goal position on top of the right hill)
2. Truncation: The length of the episode is 200.
### Arguments
```
gym.make('MountainCar-v0')
```
### Version History
* v0: Initial versions release (1.0.0)
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": 30,
}
def __init__(self, render_mode: Optional[str] = None, goal_velocity=0):
self.min_position = -1.2
self.max_position = 0.6
self.max_speed = 0.07
self.goal_position = 0.5
self.goal_velocity = goal_velocity
self.force = 0.001
self.gravity = 0.0025
self.low = np.array([self.min_position, -self.max_speed], dtype=np.float32)
self.high = np.array([self.max_position, self.max_speed], dtype=np.float32)
self.render_mode = render_mode
self.screen_width = 600
self.screen_height = 400
self.screen = None
self.clock = None
self.isopen = True
self.action_space = spaces.Discrete(3)
self.observation_space = spaces.Box(self.low, self.high, dtype=np.float32)
def step(self, action: int):
assert self.action_space.contains(
action
), f"{action!r} ({type(action)}) invalid"
position, velocity = self.state
velocity += (action - 1) * self.force + math.cos(3 * position) * (-self.gravity)
velocity = np.clip(velocity, -self.max_speed, self.max_speed)
position += velocity
position = np.clip(position, self.min_position, self.max_position)
if position == self.min_position and velocity < 0:
velocity = 0
terminated = bool(
position >= self.goal_position and velocity >= self.goal_velocity
)
reward = -1.0
self.state = (position, velocity)
if self.render_mode == "human":
self.render()
return np.array(self.state, dtype=np.float32), reward, terminated, False, {}
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
):
super().reset(seed=seed)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
low, high = utils.maybe_parse_reset_bounds(options, -0.6, -0.4)
self.state = np.array([self.np_random.uniform(low=low, high=high), 0])
if self.render_mode == "human":
self.render()
return np.array(self.state, dtype=np.float32), {}
def _height(self, xs):
return np.sin(3 * xs) * 0.45 + 0.55
def render(self):
if self.render_mode is None:
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[classic_control]`"
)
if self.screen is None:
pygame.init()
if self.render_mode == "human":
pygame.display.init()
self.screen = pygame.display.set_mode(
(self.screen_width, self.screen_height)
)
else: # mode in "rgb_array"
self.screen = pygame.Surface((self.screen_width, self.screen_height))
if self.clock is None:
self.clock = pygame.time.Clock()
world_width = self.max_position - self.min_position
scale = self.screen_width / world_width
carwidth = 40
carheight = 20
self.surf = pygame.Surface((self.screen_width, self.screen_height))
self.surf.fill((255, 255, 255))
pos = self.state[0]
xs = np.linspace(self.min_position, self.max_position, 100)
ys = self._height(xs)
xys = list(zip((xs - self.min_position) * scale, ys * scale))
pygame.draw.aalines(self.surf, points=xys, closed=False, color=(0, 0, 0))
clearance = 10
l, r, t, b = -carwidth / 2, carwidth / 2, carheight, 0
coords = []
for c in [(l, b), (l, t), (r, t), (r, b)]:
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
coords.append(
(
c[0] + (pos - self.min_position) * scale,
c[1] + clearance + self._height(pos) * scale,
)
)
gfxdraw.aapolygon(self.surf, coords, (0, 0, 0))
gfxdraw.filled_polygon(self.surf, coords, (0, 0, 0))
for c in [(carwidth / 4, 0), (-carwidth / 4, 0)]:
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
wheel = (
int(c[0] + (pos - self.min_position) * scale),
int(c[1] + clearance + self._height(pos) * scale),
)
gfxdraw.aacircle(
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
)
gfxdraw.filled_circle(
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
)
flagx = int((self.goal_position - self.min_position) * scale)
flagy1 = int(self._height(self.goal_position) * scale)
flagy2 = flagy1 + 50
gfxdraw.vline(self.surf, flagx, flagy1, flagy2, (0, 0, 0))
gfxdraw.aapolygon(
self.surf,
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
(204, 204, 0),
)
gfxdraw.filled_polygon(
self.surf,
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
(204, 204, 0),
)
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if self.render_mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif self.render_mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def get_keys_to_action(self):
# Control with left and right arrow keys.
return {(): 1, (276,): 0, (275,): 2, (275, 276): 1}
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
|