Spaces:
Running
Running
File size: 15,289 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
"""Utilities of visualising an environment."""
from collections import deque
from typing import Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import gym.error
from gym import Env, logger
from gym.core import ActType, ObsType
from gym.error import DependencyNotInstalled
from gym.logger import deprecation
try:
import pygame
from pygame import Surface
from pygame.event import Event
from pygame.locals import VIDEORESIZE
except ImportError:
raise gym.error.DependencyNotInstalled(
"Pygame is not installed, run `pip install gym[classic_control]`"
)
try:
import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
except ImportError:
logger.warn("Matplotlib is not installed, run `pip install gym[other]`")
matplotlib, plt = None, None
class MissingKeysToAction(Exception):
"""Raised when the environment does not have a default ``keys_to_action`` mapping."""
class PlayableGame:
"""Wraps an environment allowing keyboard inputs to interact with the environment."""
def __init__(
self,
env: Env,
keys_to_action: Optional[Dict[Tuple[int, ...], int]] = None,
zoom: Optional[float] = None,
):
"""Wraps an environment with a dictionary of keyboard buttons to action and if to zoom in on the environment.
Args:
env: The environment to play
keys_to_action: The dictionary of keyboard tuples and action value
zoom: If to zoom in on the environment render
"""
if env.render_mode not in {"rgb_array", "rgb_array_list"}:
logger.error(
"PlayableGame wrapper works only with rgb_array and rgb_array_list render modes, "
f"but your environment render_mode = {env.render_mode}."
)
self.env = env
self.relevant_keys = self._get_relevant_keys(keys_to_action)
self.video_size = self._get_video_size(zoom)
self.screen = pygame.display.set_mode(self.video_size)
self.pressed_keys = []
self.running = True
def _get_relevant_keys(
self, keys_to_action: Optional[Dict[Tuple[int], int]] = None
) -> set:
if keys_to_action is None:
if hasattr(self.env, "get_keys_to_action"):
keys_to_action = self.env.get_keys_to_action()
elif hasattr(self.env.unwrapped, "get_keys_to_action"):
keys_to_action = self.env.unwrapped.get_keys_to_action()
else:
raise MissingKeysToAction(
f"{self.env.spec.id} does not have explicit key to action mapping, "
"please specify one manually"
)
assert isinstance(keys_to_action, dict)
relevant_keys = set(sum((list(k) for k in keys_to_action.keys()), []))
return relevant_keys
def _get_video_size(self, zoom: Optional[float] = None) -> Tuple[int, int]:
rendered = self.env.render()
if isinstance(rendered, List):
rendered = rendered[-1]
assert rendered is not None and isinstance(rendered, np.ndarray)
video_size = (rendered.shape[1], rendered.shape[0])
if zoom is not None:
video_size = (int(video_size[0] * zoom), int(video_size[1] * zoom))
return video_size
def process_event(self, event: Event):
"""Processes a PyGame event.
In particular, this function is used to keep track of which buttons are currently pressed
and to exit the :func:`play` function when the PyGame window is closed.
Args:
event: The event to process
"""
if event.type == pygame.KEYDOWN:
if event.key in self.relevant_keys:
self.pressed_keys.append(event.key)
elif event.key == pygame.K_ESCAPE:
self.running = False
elif event.type == pygame.KEYUP:
if event.key in self.relevant_keys:
self.pressed_keys.remove(event.key)
elif event.type == pygame.QUIT:
self.running = False
elif event.type == VIDEORESIZE:
self.video_size = event.size
self.screen = pygame.display.set_mode(self.video_size)
def display_arr(
screen: Surface, arr: np.ndarray, video_size: Tuple[int, int], transpose: bool
):
"""Displays a numpy array on screen.
Args:
screen: The screen to show the array on
arr: The array to show
video_size: The video size of the screen
transpose: If to transpose the array on the screen
"""
arr_min, arr_max = np.min(arr), np.max(arr)
arr = 255.0 * (arr - arr_min) / (arr_max - arr_min)
pyg_img = pygame.surfarray.make_surface(arr.swapaxes(0, 1) if transpose else arr)
pyg_img = pygame.transform.scale(pyg_img, video_size)
screen.blit(pyg_img, (0, 0))
def play(
env: Env,
transpose: Optional[bool] = True,
fps: Optional[int] = None,
zoom: Optional[float] = None,
callback: Optional[Callable] = None,
keys_to_action: Optional[Dict[Union[Tuple[Union[str, int]], str], ActType]] = None,
seed: Optional[int] = None,
noop: ActType = 0,
):
"""Allows one to play the game using keyboard.
Example::
>>> import gym
>>> from gym.utils.play import play
>>> play(gym.make("CarRacing-v1", render_mode="rgb_array"), keys_to_action={
... "w": np.array([0, 0.7, 0]),
... "a": np.array([-1, 0, 0]),
... "s": np.array([0, 0, 1]),
... "d": np.array([1, 0, 0]),
... "wa": np.array([-1, 0.7, 0]),
... "dw": np.array([1, 0.7, 0]),
... "ds": np.array([1, 0, 1]),
... "as": np.array([-1, 0, 1]),
... }, noop=np.array([0,0,0]))
Above code works also if the environment is wrapped, so it's particularly useful in
verifying that the frame-level preprocessing does not render the game
unplayable.
If you wish to plot real time statistics as you play, you can use
:class:`gym.utils.play.PlayPlot`. Here's a sample code for plotting the reward
for last 150 steps.
>>> def callback(obs_t, obs_tp1, action, rew, terminated, truncated, info):
... return [rew,]
>>> plotter = PlayPlot(callback, 150, ["reward"])
>>> play(gym.make("ALE/AirRaid-v5"), callback=plotter.callback)
Args:
env: Environment to use for playing.
transpose: If this is ``True``, the output of observation is transposed. Defaults to ``True``.
fps: Maximum number of steps of the environment executed every second. If ``None`` (the default),
``env.metadata["render_fps""]`` (or 30, if the environment does not specify "render_fps") is used.
zoom: Zoom the observation in, ``zoom`` amount, should be positive float
callback: If a callback is provided, it will be executed after every step. It takes the following input:
obs_t: observation before performing action
obs_tp1: observation after performing action
action: action that was executed
rew: reward that was received
terminated: whether the environment is terminated or not
truncated: whether the environment is truncated or not
info: debug info
keys_to_action: Mapping from keys pressed to action performed.
Different formats are supported: Key combinations can either be expressed as a tuple of unicode code
points of the keys, as a tuple of characters, or as a string where each character of the string represents
one key.
For example if pressing 'w' and space at the same time is supposed
to trigger action number 2 then ``key_to_action`` dict could look like this:
>>> {
... # ...
... (ord('w'), ord(' ')): 2
... # ...
... }
or like this:
>>> {
... # ...
... ("w", " "): 2
... # ...
... }
or like this:
>>> {
... # ...
... "w ": 2
... # ...
... }
If ``None``, default ``key_to_action`` mapping for that environment is used, if provided.
seed: Random seed used when resetting the environment. If None, no seed is used.
noop: The action used when no key input has been entered, or the entered key combination is unknown.
"""
env.reset(seed=seed)
if keys_to_action is None:
if hasattr(env, "get_keys_to_action"):
keys_to_action = env.get_keys_to_action()
elif hasattr(env.unwrapped, "get_keys_to_action"):
keys_to_action = env.unwrapped.get_keys_to_action()
else:
raise MissingKeysToAction(
f"{env.spec.id} does not have explicit key to action mapping, "
"please specify one manually"
)
assert keys_to_action is not None
key_code_to_action = {}
for key_combination, action in keys_to_action.items():
key_code = tuple(
sorted(ord(key) if isinstance(key, str) else key for key in key_combination)
)
key_code_to_action[key_code] = action
game = PlayableGame(env, key_code_to_action, zoom)
if fps is None:
fps = env.metadata.get("render_fps", 30)
done, obs = True, None
clock = pygame.time.Clock()
while game.running:
if done:
done = False
obs = env.reset(seed=seed)
else:
action = key_code_to_action.get(tuple(sorted(game.pressed_keys)), noop)
prev_obs = obs
obs, rew, terminated, truncated, info = env.step(action)
done = terminated or truncated
if callback is not None:
callback(prev_obs, obs, action, rew, terminated, truncated, info)
if obs is not None:
rendered = env.render()
if isinstance(rendered, List):
rendered = rendered[-1]
assert rendered is not None and isinstance(rendered, np.ndarray)
display_arr(
game.screen, rendered, transpose=transpose, video_size=game.video_size
)
# process pygame events
for event in pygame.event.get():
game.process_event(event)
pygame.display.flip()
clock.tick(fps)
pygame.quit()
class PlayPlot:
"""Provides a callback to create live plots of arbitrary metrics when using :func:`play`.
This class is instantiated with a function that accepts information about a single environment transition:
- obs_t: observation before performing action
- obs_tp1: observation after performing action
- action: action that was executed
- rew: reward that was received
- terminated: whether the environment is terminated or not
- truncated: whether the environment is truncated or not
- info: debug info
It should return a list of metrics that are computed from this data.
For instance, the function may look like this::
>>> def compute_metrics(obs_t, obs_tp, action, reward, terminated, truncated, info):
... return [reward, info["cumulative_reward"], np.linalg.norm(action)]
:class:`PlayPlot` provides the method :meth:`callback` which will pass its arguments along to that function
and uses the returned values to update live plots of the metrics.
Typically, this :meth:`callback` will be used in conjunction with :func:`play` to see how the metrics evolve as you play::
>>> plotter = PlayPlot(compute_metrics, horizon_timesteps=200,
... plot_names=["Immediate Rew.", "Cumulative Rew.", "Action Magnitude"])
>>> play(your_env, callback=plotter.callback)
"""
def __init__(
self, callback: callable, horizon_timesteps: int, plot_names: List[str]
):
"""Constructor of :class:`PlayPlot`.
The function ``callback`` that is passed to this constructor should return
a list of metrics that is of length ``len(plot_names)``.
Args:
callback: Function that computes metrics from environment transitions
horizon_timesteps: The time horizon used for the live plots
plot_names: List of plot titles
Raises:
DependencyNotInstalled: If matplotlib is not installed
"""
deprecation(
"`PlayPlot` is marked as deprecated and will be removed in the near future."
)
self.data_callback = callback
self.horizon_timesteps = horizon_timesteps
self.plot_names = plot_names
if plt is None:
raise DependencyNotInstalled(
"matplotlib is not installed, run `pip install gym[other]`"
)
num_plots = len(self.plot_names)
self.fig, self.ax = plt.subplots(num_plots)
if num_plots == 1:
self.ax = [self.ax]
for axis, name in zip(self.ax, plot_names):
axis.set_title(name)
self.t = 0
self.cur_plot: List[Optional[plt.Axes]] = [None for _ in range(num_plots)]
self.data = [deque(maxlen=horizon_timesteps) for _ in range(num_plots)]
def callback(
self,
obs_t: ObsType,
obs_tp1: ObsType,
action: ActType,
rew: float,
terminated: bool,
truncated: bool,
info: dict,
):
"""The callback that calls the provided data callback and adds the data to the plots.
Args:
obs_t: The observation at time step t
obs_tp1: The observation at time step t+1
action: The action
rew: The reward
terminated: If the environment is terminated
truncated: If the environment is truncated
info: The information from the environment
"""
points = self.data_callback(
obs_t, obs_tp1, action, rew, terminated, truncated, info
)
for point, data_series in zip(points, self.data):
data_series.append(point)
self.t += 1
xmin, xmax = max(0, self.t - self.horizon_timesteps), self.t
for i, plot in enumerate(self.cur_plot):
if plot is not None:
plot.remove()
self.cur_plot[i] = self.ax[i].scatter(
range(xmin, xmax), list(self.data[i]), c="blue"
)
self.ax[i].set_xlim(xmin, xmax)
if plt is None:
raise DependencyNotInstalled(
"matplotlib is not installed, run `pip install gym[other]`"
)
plt.pause(0.000001)
|