File size: 76,459 Bytes
122d3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
# This file is part of h5py, a Python interface to the HDF5 library.
#
# http://www.h5py.org
#
# Copyright 2008-2013 Andrew Collette and contributors
#
# License:  Standard 3-clause BSD; see "license.txt" for full license terms
#           and contributor agreement.

"""

    Dataset testing operations.



    Tests all dataset operations, including creation, with the exception of:



    1. Slicing operations for read and write, handled by module test_slicing

    2. Type conversion for read and write (currently untested)

"""

import pathlib
import os
import sys
import numpy as np
import platform
import pytest
import warnings

from .common import ut, TestCase
from .data_files import get_data_file_path
from h5py import File, Group, Dataset
from h5py._hl.base import is_empty_dataspace, product
from h5py import h5f, h5t
from h5py.h5py_warnings import H5pyDeprecationWarning
from h5py import version
import h5py
import h5py._hl.selections as sel


class BaseDataset(TestCase):
    def setUp(self):
        self.f = File(self.mktemp(), 'w')

    def tearDown(self):
        if self.f:
            self.f.close()


class TestRepr(BaseDataset):
    """

        Feature: repr(Dataset) behaves sensibly

    """

    def test_repr_open(self):
        """ repr() works on live and dead datasets """
        ds = self.f.create_dataset('foo', (4,))
        self.assertIsInstance(repr(ds), str)
        self.f.close()
        self.assertIsInstance(repr(ds), str)


class TestCreateShape(BaseDataset):

    """

        Feature: Datasets can be created from a shape only

    """

    def test_create_scalar(self):
        """ Create a scalar dataset """
        dset = self.f.create_dataset('foo', ())
        self.assertEqual(dset.shape, ())

    def test_create_simple(self):
        """ Create a size-1 dataset """
        dset = self.f.create_dataset('foo', (1,))
        self.assertEqual(dset.shape, (1,))

    def test_create_integer(self):
        """ Create a size-1 dataset with integer shape"""
        dset = self.f.create_dataset('foo', 1)
        self.assertEqual(dset.shape, (1,))

    def test_create_extended(self):
        """ Create an extended dataset """
        dset = self.f.create_dataset('foo', (63,))
        self.assertEqual(dset.shape, (63,))
        self.assertEqual(dset.size, 63)
        dset = self.f.create_dataset('bar', (6, 10))
        self.assertEqual(dset.shape, (6, 10))
        self.assertEqual(dset.size, (60))

    def test_create_integer_extended(self):
        """ Create an extended dataset """
        dset = self.f.create_dataset('foo', 63)
        self.assertEqual(dset.shape, (63,))
        self.assertEqual(dset.size, 63)
        dset = self.f.create_dataset('bar', (6, 10))
        self.assertEqual(dset.shape, (6, 10))
        self.assertEqual(dset.size, (60))

    def test_default_dtype(self):
        """ Confirm that the default dtype is float """
        dset = self.f.create_dataset('foo', (63,))
        self.assertEqual(dset.dtype, np.dtype('=f4'))

    def test_missing_shape(self):
        """ Missing shape raises TypeError """
        with self.assertRaises(TypeError):
            self.f.create_dataset('foo')

    def test_long_double(self):
        """ Confirm that the default dtype is float """
        dset = self.f.create_dataset('foo', (63,), dtype=np.longdouble)
        if platform.machine() in ['ppc64le']:
            pytest.xfail("Storage of long double deactivated on %s" % platform.machine())
        self.assertEqual(dset.dtype, np.longdouble)

    @ut.skipIf(not hasattr(np, "complex256"), "No support for complex256")
    def test_complex256(self):
        """ Confirm that the default dtype is float """
        dset = self.f.create_dataset('foo', (63,),
                                     dtype=np.dtype('complex256'))
        self.assertEqual(dset.dtype, np.dtype('complex256'))

    def test_name_bytes(self):
        dset = self.f.create_dataset(b'foo', (1,))
        self.assertEqual(dset.shape, (1,))

        dset2 = self.f.create_dataset(b'bar/baz', (2,))
        self.assertEqual(dset2.shape, (2,))

class TestCreateData(BaseDataset):

    """

        Feature: Datasets can be created from existing data

    """

    def test_create_scalar(self):
        """ Create a scalar dataset from existing array """
        data = np.ones((), 'f')
        dset = self.f.create_dataset('foo', data=data)
        self.assertEqual(dset.shape, data.shape)

    def test_create_extended(self):
        """ Create an extended dataset from existing data """
        data = np.ones((63,), 'f')
        dset = self.f.create_dataset('foo', data=data)
        self.assertEqual(dset.shape, data.shape)

    def test_dataset_intermediate_group(self):
        """ Create dataset with missing intermediate groups """
        ds = self.f.create_dataset("/foo/bar/baz", shape=(10, 10), dtype='<i4')
        self.assertIsInstance(ds, h5py.Dataset)
        self.assertTrue("/foo/bar/baz" in self.f)

    def test_reshape(self):
        """ Create from existing data, and make it fit a new shape """
        data = np.arange(30, dtype='f')
        dset = self.f.create_dataset('foo', shape=(10, 3), data=data)
        self.assertEqual(dset.shape, (10, 3))
        self.assertArrayEqual(dset[...], data.reshape((10, 3)))

    def test_appropriate_low_level_id(self):
        " Binding Dataset to a non-DatasetID identifier fails with ValueError "
        with self.assertRaises(ValueError):
            Dataset(self.f['/'].id)

    def check_h5_string(self, dset, cset, length):
        tid = dset.id.get_type()
        assert isinstance(tid, h5t.TypeStringID)
        assert tid.get_cset() == cset
        if length is None:
            assert tid.is_variable_str()
        else:
            assert not tid.is_variable_str()
            assert tid.get_size() == length

    def test_create_bytestring(self):
        """ Creating dataset with byte string yields vlen ASCII dataset """
        def check_vlen_ascii(dset):
            self.check_h5_string(dset, h5t.CSET_ASCII, length=None)
        check_vlen_ascii(self.f.create_dataset('a', data=b'abc'))
        check_vlen_ascii(self.f.create_dataset('b', data=[b'abc', b'def']))
        check_vlen_ascii(self.f.create_dataset('c', data=[[b'abc'], [b'def']]))
        check_vlen_ascii(self.f.create_dataset(
            'd', data=np.array([b'abc', b'def'], dtype=object)
        ))

    def test_create_np_s(self):
        dset = self.f.create_dataset('a', data=np.array([b'abc', b'def'], dtype='S3'))
        self.check_h5_string(dset, h5t.CSET_ASCII, length=3)

    def test_create_strings(self):
        def check_vlen_utf8(dset):
            self.check_h5_string(dset, h5t.CSET_UTF8, length=None)
        check_vlen_utf8(self.f.create_dataset('a', data='abc'))
        check_vlen_utf8(self.f.create_dataset('b', data=['abc', 'def']))
        check_vlen_utf8(self.f.create_dataset('c', data=[['abc'], ['def']]))
        check_vlen_utf8(self.f.create_dataset(
            'd', data=np.array(['abc', 'def'], dtype=object)
        ))

    def test_create_np_u(self):
        with self.assertRaises(TypeError):
            self.f.create_dataset('a', data=np.array([b'abc', b'def'], dtype='U3'))

    def test_empty_create_via_None_shape(self):
        self.f.create_dataset('foo', dtype='f')
        self.assertTrue(is_empty_dataspace(self.f['foo'].id))

    def test_empty_create_via_Empty_class(self):
        self.f.create_dataset('foo', data=h5py.Empty(dtype='f'))
        self.assertTrue(is_empty_dataspace(self.f['foo'].id))

    def test_create_incompatible_data(self):
        # Shape tuple is incompatible with data
        with self.assertRaises(ValueError):
            self.f.create_dataset('bar', shape=4, data= np.arange(3))


class TestReadDirectly:

    """

        Feature: Read data directly from Dataset into a Numpy array

    """

    @pytest.mark.parametrize(

        'source_shape,dest_shape,source_sel,dest_sel',

        [

            ((100,), (100,), np.s_[0:10], np.s_[50:60]),

            ((70,), (100,), np.s_[50:60], np.s_[90:]),

            ((30, 10), (20, 20), np.s_[:20, :], np.s_[:, :10]),

            ((5, 7, 9), (6,), np.s_[2, :6, 3], np.s_[:]),

        ])
    def test_read_direct(self, writable_file, source_shape, dest_shape, source_sel, dest_sel):
        source_values = np.arange(product(source_shape), dtype="int64").reshape(source_shape)
        dset = writable_file.create_dataset("dset", source_shape, data=source_values)
        arr = np.full(dest_shape, -1, dtype="int64")
        expected = arr.copy()
        expected[dest_sel] = source_values[source_sel]

        dset.read_direct(arr, source_sel, dest_sel)
        np.testing.assert_array_equal(arr, expected)

    def test_no_sel(self, writable_file):
        dset = writable_file.create_dataset("dset", (10,), data=np.arange(10, dtype="int64"))
        arr = np.ones((10,), dtype="int64")
        dset.read_direct(arr)
        np.testing.assert_array_equal(arr, np.arange(10, dtype="int64"))

    def test_empty(self, writable_file):
        empty_dset = writable_file.create_dataset("edset", dtype='int64')
        arr = np.ones((100,), 'int64')
        with pytest.raises(TypeError):
            empty_dset.read_direct(arr, np.s_[0:10], np.s_[50:60])

    def test_wrong_shape(self, writable_file):
        dset = writable_file.create_dataset("dset", (100,), dtype='int64')
        arr = np.ones((200,))
        with pytest.raises(TypeError):
            dset.read_direct(arr)

    def test_not_c_contiguous(self, writable_file):
        dset = writable_file.create_dataset("dset", (10, 10), dtype='int64')
        arr = np.ones((10, 10), order='F')
        with pytest.raises(TypeError):
            dset.read_direct(arr)

class TestWriteDirectly:

    """

        Feature: Write Numpy array directly into Dataset

    """

    @pytest.mark.parametrize(

        'source_shape,dest_shape,source_sel,dest_sel',

        [

            ((100,), (100,), np.s_[0:10], np.s_[50:60]),

            ((70,), (100,), np.s_[50:60], np.s_[90:]),

            ((30, 10), (20, 20), np.s_[:20, :], np.s_[:, :10]),

            ((5, 7, 9), (6,), np.s_[2, :6, 3], np.s_[:]),

        ])
    def test_write_direct(self, writable_file, source_shape, dest_shape, source_sel, dest_sel):
        dset = writable_file.create_dataset('dset', dest_shape, dtype='int32', fillvalue=-1)
        arr = np.arange(product(source_shape)).reshape(source_shape)
        expected = np.full(dest_shape, -1, dtype='int32')
        expected[dest_sel] = arr[source_sel]
        dset.write_direct(arr, source_sel, dest_sel)
        np.testing.assert_array_equal(dset[:], expected)

    def test_empty(self, writable_file):
        empty_dset = writable_file.create_dataset("edset", dtype='int64')
        with pytest.raises(TypeError):
            empty_dset.write_direct(np.ones((100,)), np.s_[0:10], np.s_[50:60])

    def test_wrong_shape(self, writable_file):
        dset = writable_file.create_dataset("dset", (100,), dtype='int64')
        arr = np.ones((200,))
        with pytest.raises(TypeError):
            dset.write_direct(arr)

    def test_not_c_contiguous(self, writable_file):
        dset = writable_file.create_dataset("dset", (10, 10), dtype='int64')
        arr = np.ones((10, 10), order='F')
        with pytest.raises(TypeError):
            dset.write_direct(arr)


class TestCreateRequire(BaseDataset):

    """

        Feature: Datasets can be created only if they don't exist in the file

    """

    def test_create(self):
        """ Create new dataset with no conflicts """
        dset = self.f.require_dataset('foo', (10, 3), 'f')
        self.assertIsInstance(dset, Dataset)
        self.assertEqual(dset.shape, (10, 3))

    def test_create_existing(self):
        """ require_dataset yields existing dataset """
        dset = self.f.require_dataset('foo', (10, 3), 'f')
        dset2 = self.f.require_dataset('foo', (10, 3), 'f')
        self.assertEqual(dset, dset2)

    def test_create_1D(self):
        """ require_dataset with integer shape yields existing dataset"""
        dset = self.f.require_dataset('foo', 10, 'f')
        dset2 = self.f.require_dataset('foo', 10, 'f')
        self.assertEqual(dset, dset2)

        dset = self.f.require_dataset('bar', (10,), 'f')
        dset2 = self.f.require_dataset('bar', 10, 'f')
        self.assertEqual(dset, dset2)

        dset = self.f.require_dataset('baz', 10, 'f')
        dset2 = self.f.require_dataset(b'baz', (10,), 'f')
        self.assertEqual(dset, dset2)

    def test_shape_conflict(self):
        """ require_dataset with shape conflict yields TypeError """
        self.f.create_dataset('foo', (10, 3), 'f')
        with self.assertRaises(TypeError):
            self.f.require_dataset('foo', (10, 4), 'f')

    def test_type_conflict(self):
        """ require_dataset with object type conflict yields TypeError """
        self.f.create_group('foo')
        with self.assertRaises(TypeError):
            self.f.require_dataset('foo', (10, 3), 'f')

    def test_dtype_conflict(self):
        """ require_dataset with dtype conflict (strict mode) yields TypeError

        """
        dset = self.f.create_dataset('foo', (10, 3), 'f')
        with self.assertRaises(TypeError):
            self.f.require_dataset('foo', (10, 3), 'S10')

    def test_dtype_exact(self):
        """ require_dataset with exactly dtype match """

        dset = self.f.create_dataset('foo', (10, 3), 'f')
        dset2 = self.f.require_dataset('foo', (10, 3), 'f', exact=True)
        self.assertEqual(dset, dset2)

    def test_dtype_close(self):
        """ require_dataset with convertible type succeeds (non-strict mode)

        """
        dset = self.f.create_dataset('foo', (10, 3), 'i4')
        dset2 = self.f.require_dataset('foo', (10, 3), 'i2', exact=False)
        self.assertEqual(dset, dset2)
        self.assertEqual(dset2.dtype, np.dtype('i4'))


class TestCreateChunked(BaseDataset):

    """

        Feature: Datasets can be created by manually specifying chunks

    """

    def test_create_chunks(self):
        """ Create via chunks tuple """
        dset = self.f.create_dataset('foo', shape=(100,), chunks=(10,))
        self.assertEqual(dset.chunks, (10,))

    def test_create_chunks_integer(self):
        """ Create via chunks integer """
        dset = self.f.create_dataset('foo', shape=(100,), chunks=10)
        self.assertEqual(dset.chunks, (10,))

    def test_chunks_mismatch(self):
        """ Illegal chunk size raises ValueError """
        with self.assertRaises(ValueError):
            self.f.create_dataset('foo', shape=(100,), chunks=(200,))

    def test_chunks_false(self):
        """ Chunked format required for given storage options """
        with self.assertRaises(ValueError):
            self.f.create_dataset('foo', shape=(10,), maxshape=100, chunks=False)

    def test_chunks_scalar(self):
        """ Attempting to create chunked scalar dataset raises TypeError """
        with self.assertRaises(TypeError):
            self.f.create_dataset('foo', shape=(), chunks=(50,))

    def test_auto_chunks(self):
        """ Auto-chunking of datasets """
        dset = self.f.create_dataset('foo', shape=(20, 100), chunks=True)
        self.assertIsInstance(dset.chunks, tuple)
        self.assertEqual(len(dset.chunks), 2)

    def test_auto_chunks_abuse(self):
        """ Auto-chunking with pathologically large element sizes """
        dset = self.f.create_dataset('foo', shape=(3,), dtype='S100000000', chunks=True)
        self.assertEqual(dset.chunks, (1,))

    def test_scalar_assignment(self):
        """ Test scalar assignment of chunked dataset """
        dset = self.f.create_dataset('foo', shape=(3, 50, 50),
                                     dtype=np.int32, chunks=(1, 50, 50))
        # test assignment of selection smaller than chunk size
        dset[1, :, 40] = 10
        self.assertTrue(np.all(dset[1, :, 40] == 10))

        # test assignment of selection equal to chunk size
        dset[1] = 11
        self.assertTrue(np.all(dset[1] == 11))

        # test assignment of selection bigger than chunk size
        dset[0:2] = 12
        self.assertTrue(np.all(dset[0:2] == 12))

    def test_auto_chunks_no_shape(self):
        """ Auto-chunking of empty datasets not allowed"""
        with pytest.raises(TypeError, match='Empty') as err:
            self.f.create_dataset('foo', dtype='S100', chunks=True)

        with pytest.raises(TypeError, match='Empty') as err:
            self.f.create_dataset('foo', dtype='S100', maxshape=20)


class TestCreateFillvalue(BaseDataset):

    """

        Feature: Datasets can be created with fill value

    """

    def test_create_fillval(self):
        """ Fill value is reflected in dataset contents """
        dset = self.f.create_dataset('foo', (10,), fillvalue=4.0)
        self.assertEqual(dset[0], 4.0)
        self.assertEqual(dset[7], 4.0)

    def test_property(self):
        """ Fill value is recoverable via property """
        dset = self.f.create_dataset('foo', (10,), fillvalue=3.0)
        self.assertEqual(dset.fillvalue, 3.0)
        self.assertNotIsInstance(dset.fillvalue, np.ndarray)

    def test_property_none(self):
        """ .fillvalue property works correctly if not set """
        dset = self.f.create_dataset('foo', (10,))
        self.assertEqual(dset.fillvalue, 0)

    def test_compound(self):
        """ Fill value works with compound types """
        dt = np.dtype([('a', 'f4'), ('b', 'i8')])
        v = np.ones((1,), dtype=dt)[0]
        dset = self.f.create_dataset('foo', (10,), dtype=dt, fillvalue=v)
        self.assertEqual(dset.fillvalue, v)
        self.assertAlmostEqual(dset[4], v)

    def test_exc(self):
        """ Bogus fill value raises ValueError """
        with self.assertRaises(ValueError):
            dset = self.f.create_dataset('foo', (10,),
                    dtype=[('a', 'i'), ('b', 'f')], fillvalue=42)


@pytest.mark.parametrize('dt,expected', [

    (int, 0),

    (np.int32, 0),

    (np.int64, 0),

    (float, 0.0),

    (np.float32, 0.0),

    (np.float64, 0.0),

    (h5py.string_dtype(encoding='utf-8', length=5), b''),

    (h5py.string_dtype(encoding='ascii', length=5), b''),

    (h5py.string_dtype(encoding='utf-8'), b''),

    (h5py.string_dtype(encoding='ascii'), b''),

    (h5py.string_dtype(), b''),



])
def test_get_unset_fill_value(dt, expected, writable_file):
    dset = writable_file.create_dataset('foo', (10,), dtype=dt)
    assert dset.fillvalue == expected


class TestCreateNamedType(BaseDataset):

    """

        Feature: Datasets created from an existing named type

    """

    def test_named(self):
        """ Named type object works and links the dataset to type """
        self.f['type'] = np.dtype('f8')
        dset = self.f.create_dataset('x', (100,), dtype=self.f['type'])
        self.assertEqual(dset.dtype, np.dtype('f8'))
        self.assertEqual(dset.id.get_type(), self.f['type'].id)
        self.assertTrue(dset.id.get_type().committed())


@ut.skipIf('gzip' not in h5py.filters.encode, "DEFLATE is not installed")
class TestCreateGzip(BaseDataset):

    """

        Feature: Datasets created with gzip compression

    """

    def test_gzip(self):
        """ Create with explicit gzip options """
        dset = self.f.create_dataset('foo', (20, 30), compression='gzip',
                                     compression_opts=9)
        self.assertEqual(dset.compression, 'gzip')
        self.assertEqual(dset.compression_opts, 9)

    def test_gzip_implicit(self):
        """ Create with implicit gzip level (level 4) """
        dset = self.f.create_dataset('foo', (20, 30), compression='gzip')
        self.assertEqual(dset.compression, 'gzip')
        self.assertEqual(dset.compression_opts, 4)

    def test_gzip_number(self):
        """ Create with gzip level by specifying integer """
        dset = self.f.create_dataset('foo', (20, 30), compression=7)
        self.assertEqual(dset.compression, 'gzip')
        self.assertEqual(dset.compression_opts, 7)

        original_compression_vals = h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS
        try:
            h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = tuple()
            with self.assertRaises(ValueError):
                dset = self.f.create_dataset('foo', (20, 30), compression=7)
        finally:
            h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = original_compression_vals

    def test_gzip_exc(self):
        """ Illegal gzip level (explicit or implicit) raises ValueError """
        with self.assertRaises((ValueError, RuntimeError)):
            self.f.create_dataset('foo', (20, 30), compression=14)
        with self.assertRaises(ValueError):
            self.f.create_dataset('foo', (20, 30), compression=-4)
        with self.assertRaises(ValueError):
            self.f.create_dataset('foo', (20, 30), compression='gzip',
                                  compression_opts=14)


@ut.skipIf('gzip' not in h5py.filters.encode, "DEFLATE is not installed")
class TestCreateCompressionNumber(BaseDataset):

    """

        Feature: Datasets created with a compression code

    """

    def test_compression_number(self):
        """ Create with compression number of gzip (h5py.h5z.FILTER_DEFLATE) and a compression level of 7"""
        original_compression_vals = h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS
        try:
            h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = tuple()
            dset = self.f.create_dataset('foo', (20, 30), compression=h5py.h5z.FILTER_DEFLATE, compression_opts=(7,))
        finally:
            h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = original_compression_vals

        self.assertEqual(dset.compression, 'gzip')
        self.assertEqual(dset.compression_opts, 7)

    def test_compression_number_invalid(self):
        """ Create with invalid compression numbers  """
        with self.assertRaises(ValueError) as e:
            self.f.create_dataset('foo', (20, 30), compression=-999)
        self.assertIn("Invalid filter", str(e.exception))

        with self.assertRaises(ValueError) as e:
            self.f.create_dataset('foo', (20, 30), compression=100)
        self.assertIn("Unknown compression", str(e.exception))

        original_compression_vals = h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS
        try:
            h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = tuple()

            # Using gzip compression requires a compression level specified in compression_opts
            with self.assertRaises(IndexError):
                self.f.create_dataset('foo', (20, 30), compression=h5py.h5z.FILTER_DEFLATE)
        finally:
            h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = original_compression_vals


@ut.skipIf('lzf' not in h5py.filters.encode, "LZF is not installed")
class TestCreateLZF(BaseDataset):

    """

        Feature: Datasets created with LZF compression

    """

    def test_lzf(self):
        """ Create with explicit lzf """
        dset = self.f.create_dataset('foo', (20, 30), compression='lzf')
        self.assertEqual(dset.compression, 'lzf')
        self.assertEqual(dset.compression_opts, None)

        testdata = np.arange(100)
        dset = self.f.create_dataset('bar', data=testdata, compression='lzf')
        self.assertEqual(dset.compression, 'lzf')
        self.assertEqual(dset.compression_opts, None)

        self.f.flush()  # Actually write to file

        readdata = self.f['bar'][()]
        self.assertArrayEqual(readdata, testdata)

    def test_lzf_exc(self):
        """ Giving lzf options raises ValueError """
        with self.assertRaises(ValueError):
            self.f.create_dataset('foo', (20, 30), compression='lzf',
                                  compression_opts=4)


@ut.skipIf('szip' not in h5py.filters.encode, "SZIP is not installed")
class TestCreateSZIP(BaseDataset):

    """

        Feature: Datasets created with LZF compression

    """

    def test_szip(self):
        """ Create with explicit szip """
        dset = self.f.create_dataset('foo', (20, 30), compression='szip',
                                     compression_opts=('ec', 16))


@ut.skipIf('shuffle' not in h5py.filters.encode, "SHUFFLE is not installed")
class TestCreateShuffle(BaseDataset):

    """

        Feature: Datasets can use shuffling filter

    """

    def test_shuffle(self):
        """ Enable shuffle filter """
        dset = self.f.create_dataset('foo', (20, 30), shuffle=True)
        self.assertTrue(dset.shuffle)


@ut.skipIf('fletcher32' not in h5py.filters.encode, "FLETCHER32 is not installed")
class TestCreateFletcher32(BaseDataset):
    """

        Feature: Datasets can use the fletcher32 filter

    """

    def test_fletcher32(self):
        """ Enable fletcher32 filter """
        dset = self.f.create_dataset('foo', (20, 30), fletcher32=True)
        self.assertTrue(dset.fletcher32)


@ut.skipIf('scaleoffset' not in h5py.filters.encode, "SCALEOFFSET is not installed")
class TestCreateScaleOffset(BaseDataset):
    """

        Feature: Datasets can use the scale/offset filter

    """

    def test_float_fails_without_options(self):
        """ Ensure that a scale factor is required for scaleoffset compression of floating point data """

        with self.assertRaises(ValueError):
            dset = self.f.create_dataset('foo', (20, 30), dtype=float, scaleoffset=True)

    def test_non_integer(self):
        """ Check when scaleoffset is negetive"""

        with self.assertRaises(ValueError):
            dset = self.f.create_dataset('foo', (20, 30), dtype=float, scaleoffset=-0.1)

    def test_unsupport_dtype(self):
        """ Check when dtype is unsupported type"""

        with self.assertRaises(TypeError):
            dset = self.f.create_dataset('foo', (20, 30), dtype=bool, scaleoffset=True)

    def test_float(self):
        """ Scaleoffset filter works for floating point data """

        scalefac = 4
        shape = (100, 300)
        range = 20 * 10 ** scalefac
        testdata = (np.random.rand(*shape) - 0.5) * range

        dset = self.f.create_dataset('foo', shape, dtype=np.float64, scaleoffset=scalefac)

        # Dataset reports that scaleoffset is in use
        assert dset.scaleoffset is not None

        # Dataset round-trips
        dset[...] = testdata
        filename = self.f.filename
        self.f.close()
        self.f = h5py.File(filename, 'r')
        readdata = self.f['foo'][...]

        # Test that data round-trips to requested precision
        self.assertArrayEqual(readdata, testdata, precision=10 ** (-scalefac))

        # Test that the filter is actually active (i.e. compression is lossy)
        assert not (readdata == testdata).all()

    def test_int(self):
        """ Scaleoffset filter works for integer data with default precision """

        nbits = 12
        shape = (100, 300)
        testdata = np.random.randint(0, 2 ** nbits - 1, size=shape, dtype=np.int64)

        # Create dataset; note omission of nbits (for library-determined precision)
        dset = self.f.create_dataset('foo', shape, dtype=np.int64, scaleoffset=True)

        # Dataset reports scaleoffset enabled
        assert dset.scaleoffset is not None

        # Data round-trips correctly and identically
        dset[...] = testdata
        filename = self.f.filename
        self.f.close()
        self.f = h5py.File(filename, 'r')
        readdata = self.f['foo'][...]
        self.assertArrayEqual(readdata, testdata)

    def test_int_with_minbits(self):
        """ Scaleoffset filter works for integer data with specified precision """

        nbits = 12
        shape = (100, 300)
        testdata = np.random.randint(0, 2 ** nbits, size=shape, dtype=np.int64)

        dset = self.f.create_dataset('foo', shape, dtype=np.int64, scaleoffset=nbits)

        # Dataset reports scaleoffset enabled with correct precision
        self.assertTrue(dset.scaleoffset == 12)

        # Data round-trips correctly
        dset[...] = testdata
        filename = self.f.filename
        self.f.close()
        self.f = h5py.File(filename, 'r')
        readdata = self.f['foo'][...]
        self.assertArrayEqual(readdata, testdata)

    def test_int_with_minbits_lossy(self):
        """ Scaleoffset filter works for integer data with specified precision """

        nbits = 12
        shape = (100, 300)
        testdata = np.random.randint(0, 2 ** (nbits + 1) - 1, size=shape, dtype=np.int64)

        dset = self.f.create_dataset('foo', shape, dtype=np.int64, scaleoffset=nbits)

        # Dataset reports scaleoffset enabled with correct precision
        self.assertTrue(dset.scaleoffset == 12)

        # Data can be written and read
        dset[...] = testdata
        filename = self.f.filename
        self.f.close()
        self.f = h5py.File(filename, 'r')
        readdata = self.f['foo'][...]

        # Compression is lossy
        assert not (readdata == testdata).all()


class TestExternal(BaseDataset):
    """

        Feature: Datasets with the external storage property

    """
    def test_contents(self):
        """ Create and access an external dataset """

        shape = (6, 100)
        testdata = np.random.random(shape)

        # create a dataset in an external file and set it
        ext_file = self.mktemp()
        external = [(ext_file, 0, h5f.UNLIMITED)]
        # ${ORIGIN} should be replaced by the parent dir of the HDF5 file
        dset = self.f.create_dataset('foo', shape, dtype=testdata.dtype, external=external, efile_prefix="${ORIGIN}")
        dset[...] = testdata

        assert dset.external is not None

        # verify file's existence, size, and contents
        with open(ext_file, 'rb') as fid:
            contents = fid.read()
        assert contents == testdata.tobytes()

        efile_prefix = pathlib.Path(dset.id.get_access_plist().get_efile_prefix().decode()).as_posix()
        parent = pathlib.Path(self.f.filename).parent.as_posix()
        assert efile_prefix == parent

    def test_contents_efile_prefix(self):
        """ Create and access an external dataset using an efile_prefix"""

        shape = (6, 100)
        testdata = np.random.random(shape)

        # create a dataset in an external file and set it
        ext_file = self.mktemp()
        # set only the basename, let the efile_prefix do the rest
        external = [(os.path.basename(ext_file), 0, h5f.UNLIMITED)]
        dset = self.f.create_dataset('foo', shape, dtype=testdata.dtype, external=external, efile_prefix=os.path.dirname(ext_file))
        dset[...] = testdata

        assert dset.external is not None

        # verify file's existence, size, and contents
        with open(ext_file, 'rb') as fid:
            contents = fid.read()
        assert contents == testdata.tobytes()

        # check efile_prefix, only for 1.10.0 due to HDFFV-9716
        if h5py.version.hdf5_version_tuple >= (1,10,0):
            efile_prefix = pathlib.Path(dset.id.get_access_plist().get_efile_prefix().decode()).as_posix()
            parent = pathlib.Path(ext_file).parent.as_posix()
            assert efile_prefix == parent

        dset2 = self.f.require_dataset('foo', shape, testdata.dtype, efile_prefix=os.path.dirname(ext_file))
        assert dset2.external is not None
        dset2[()] == testdata

    def test_name_str(self):
        """ External argument may be a file name str only """

        self.f.create_dataset('foo', (6, 100), external=self.mktemp())

    def test_name_path(self):
        """ External argument may be a file name path only """

        self.f.create_dataset('foo', (6, 100),
                              external=pathlib.Path(self.mktemp()))

    def test_iter_multi(self):
        """ External argument may be an iterable of multiple tuples """

        ext_file = self.mktemp()
        N = 100
        external = iter((ext_file, x * 1000, 1000) for x in range(N))
        dset = self.f.create_dataset('poo', (6, 100), external=external)
        assert len(dset.external) == N

    def test_invalid(self):
        """ Test with invalid external lists """

        shape = (6, 100)
        ext_file = self.mktemp()

        for exc_type, external in [
            (TypeError, [ext_file]),
            (TypeError, [ext_file, 0]),
            (TypeError, [ext_file, 0, h5f.UNLIMITED]),
            (ValueError, [(ext_file,)]),
            (ValueError, [(ext_file, 0)]),
            (ValueError, [(ext_file, 0, h5f.UNLIMITED, 0)]),
            (TypeError, [(ext_file, 0, "h5f.UNLIMITED")]),
        ]:
            with self.assertRaises(exc_type):
                self.f.create_dataset('foo', shape, external=external)

    def test_create_expandable(self):
        """ Create expandable external dataset """

        ext_file = self.mktemp()
        shape = (128, 64)
        maxshape = (None, 64)
        exp_dset = self.f.create_dataset('foo', shape=shape, maxshape=maxshape,
                                         external=ext_file)
        assert exp_dset.chunks is None
        assert exp_dset.shape == shape
        assert exp_dset.maxshape == maxshape


class TestAutoCreate(BaseDataset):

    """

        Feature: Datasets auto-created from data produce the correct types

    """
    def assert_string_type(self, ds, cset, variable=True):
        tid = ds.id.get_type()
        self.assertEqual(type(tid), h5py.h5t.TypeStringID)
        self.assertEqual(tid.get_cset(), cset)
        if variable:
            assert tid.is_variable_str()

    def test_vlen_bytes(self):
        """Assigning byte strings produces a vlen string ASCII dataset """
        self.f['x'] = b"Hello there"
        self.assert_string_type(self.f['x'], h5py.h5t.CSET_ASCII)

        self.f['y'] = [b"a", b"bc"]
        self.assert_string_type(self.f['y'], h5py.h5t.CSET_ASCII)

        self.f['z'] = np.array([b"a", b"bc"], dtype=np.object_)
        self.assert_string_type(self.f['z'], h5py.h5t.CSET_ASCII)

    def test_vlen_unicode(self):
        """Assigning unicode strings produces a vlen string UTF-8 dataset """
        self.f['x'] = "Hello there" + chr(0x2034)
        self.assert_string_type(self.f['x'], h5py.h5t.CSET_UTF8)

        self.f['y'] = ["a", "bc"]
        self.assert_string_type(self.f['y'], h5py.h5t.CSET_UTF8)

        # 2D array; this only works with an array, not nested lists
        self.f['z'] = np.array([["a", "bc"]], dtype=np.object_)
        self.assert_string_type(self.f['z'], h5py.h5t.CSET_UTF8)

    def test_string_fixed(self):
        """ Assignment of fixed-length byte string produces a fixed-length

        ascii dataset """
        self.f['x'] = np.bytes_("Hello there")
        ds = self.f['x']
        self.assert_string_type(ds, h5py.h5t.CSET_ASCII, variable=False)
        self.assertEqual(ds.id.get_type().get_size(), 11)


class TestCreateLike(BaseDataset):
    def test_no_chunks(self):
        self.f['lol'] = np.arange(25).reshape(5, 5)
        self.f.create_dataset_like('like_lol', self.f['lol'])
        dslike = self.f['like_lol']
        self.assertEqual(dslike.shape, (5, 5))
        self.assertIs(dslike.chunks, None)

    def test_track_times(self):
        orig = self.f.create_dataset('honda', data=np.arange(12),
                                     track_times=True)
        self.assertNotEqual(0, h5py.h5g.get_objinfo(orig._id).mtime)
        similar = self.f.create_dataset_like('hyundai', orig)
        self.assertNotEqual(0, h5py.h5g.get_objinfo(similar._id).mtime)

        orig = self.f.create_dataset('ibm', data=np.arange(12),
                                     track_times=False)
        self.assertEqual(0, h5py.h5g.get_objinfo(orig._id).mtime)
        similar = self.f.create_dataset_like('lenovo', orig)
        self.assertEqual(0, h5py.h5g.get_objinfo(similar._id).mtime)

    def test_maxshape(self):
        """ Test when other.maxshape != other.shape """

        other = self.f.create_dataset('other', (10,), maxshape=20)
        similar = self.f.create_dataset_like('sim', other)
        self.assertEqual(similar.shape, (10,))
        self.assertEqual(similar.maxshape, (20,))

class TestChunkIterator(BaseDataset):
    def test_no_chunks(self):
        dset = self.f.create_dataset("foo", ())
        with self.assertRaises(TypeError):
            dset.iter_chunks()

    def test_1d(self):
        dset = self.f.create_dataset("foo", (100,), chunks=(32,))
        expected = ((slice(0,32,1),), (slice(32,64,1),), (slice(64,96,1),),
            (slice(96,100,1),))
        self.assertEqual(list(dset.iter_chunks()), list(expected))
        expected = ((slice(50,64,1),), (slice(64,96,1),), (slice(96,97,1),))
        self.assertEqual(list(dset.iter_chunks(np.s_[50:97])), list(expected))

    def test_2d(self):
        dset = self.f.create_dataset("foo", (100,100), chunks=(32,64))
        expected = ((slice(0, 32, 1), slice(0, 64, 1)), (slice(0, 32, 1),
        slice(64, 100, 1)), (slice(32, 64, 1), slice(0, 64, 1)),
        (slice(32, 64, 1), slice(64, 100, 1)), (slice(64, 96, 1),
        slice(0, 64, 1)), (slice(64, 96, 1), slice(64, 100, 1)),
        (slice(96, 100, 1), slice(0, 64, 1)), (slice(96, 100, 1),
        slice(64, 100, 1)))
        self.assertEqual(list(dset.iter_chunks()), list(expected))

        expected = ((slice(48, 52, 1), slice(40, 50, 1)),)
        self.assertEqual(list(dset.iter_chunks(np.s_[48:52,40:50])), list(expected))

    def test_2d_partial_slice(self):
        dset = self.f.create_dataset("foo", (5,5), chunks=(2,2))
        expected = ((slice(3, 4, 1), slice(3, 4, 1)),
                   (slice(3, 4, 1), slice(4, 5, 1)),
                   (slice(4, 5, 1), slice(3, 4, 1)),
                   (slice(4, 5, 1), slice(4, 5, 1)))
        sel = slice(3,5)
        self.assertEqual(list(dset.iter_chunks((sel, sel))), list(expected))



class TestResize(BaseDataset):

    """

        Feature: Datasets created with "maxshape" may be resized

    """

    def test_create(self):
        """ Create dataset with "maxshape" """
        dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
        self.assertIsNot(dset.chunks, None)
        self.assertEqual(dset.maxshape, (20, 60))

    def test_create_1D(self):
        """ Create dataset with "maxshape" using integer maxshape"""
        dset = self.f.create_dataset('foo', (20,), maxshape=20)
        self.assertIsNot(dset.chunks, None)
        self.assertEqual(dset.maxshape, (20,))

        dset = self.f.create_dataset('bar', 20, maxshape=20)
        self.assertEqual(dset.maxshape, (20,))

    def test_resize(self):
        """ Datasets may be resized up to maxshape """
        dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
        self.assertEqual(dset.shape, (20, 30))
        dset.resize((20, 50))
        self.assertEqual(dset.shape, (20, 50))
        dset.resize((20, 60))
        self.assertEqual(dset.shape, (20, 60))

    def test_resize_1D(self):
        """ Datasets may be resized up to maxshape using integer maxshape"""
        dset = self.f.create_dataset('foo', 20, maxshape=40)
        self.assertEqual(dset.shape, (20,))
        dset.resize((30,))
        self.assertEqual(dset.shape, (30,))

    def test_resize_over(self):
        """ Resizing past maxshape triggers an exception """
        dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
        with self.assertRaises(Exception):
            dset.resize((20, 70))

    def test_resize_nonchunked(self):
        """ Resizing non-chunked dataset raises TypeError """
        dset = self.f.create_dataset("foo", (20, 30))
        with self.assertRaises(TypeError):
            dset.resize((20, 60))

    def test_resize_axis(self):
        """ Resize specified axis """
        dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
        dset.resize(50, axis=1)
        self.assertEqual(dset.shape, (20, 50))

    def test_axis_exc(self):
        """ Illegal axis raises ValueError """
        dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
        with self.assertRaises(ValueError):
            dset.resize(50, axis=2)

    def test_zero_dim(self):
        """ Allow zero-length initial dims for unlimited axes (issue 111) """
        dset = self.f.create_dataset('foo', (15, 0), maxshape=(15, None))
        self.assertEqual(dset.shape, (15, 0))
        self.assertEqual(dset.maxshape, (15, None))


class TestDtype(BaseDataset):

    """

        Feature: Dataset dtype is available as .dtype property

    """

    def test_dtype(self):
        """ Retrieve dtype from dataset """
        dset = self.f.create_dataset('foo', (5,), '|S10')
        self.assertEqual(dset.dtype, np.dtype('|S10'))

    def test_dtype_complex32(self):
        """ Retrieve dtype from complex float16 dataset (gh-2156) """
        # No native support in numpy as of v1.23.3, so expect compound type.
        complex32 = np.dtype([('r', np.float16), ('i', np.float16)])
        dset = self.f.create_dataset('foo', (5,), complex32)
        self.assertEqual(dset.dtype, complex32)


class TestLen(BaseDataset):

    """

        Feature: Size of first axis is available via Python's len

    """

    def test_len(self):
        """ Python len() (under 32 bits) """
        dset = self.f.create_dataset('foo', (312, 15))
        self.assertEqual(len(dset), 312)

    def test_len_big(self):
        """ Python len() vs Dataset.len() """
        dset = self.f.create_dataset('foo', (2 ** 33, 15))
        self.assertEqual(dset.shape, (2 ** 33, 15))
        if sys.maxsize == 2 ** 31 - 1:
            with self.assertRaises(OverflowError):
                len(dset)
        else:
            self.assertEqual(len(dset), 2 ** 33)
        self.assertEqual(dset.len(), 2 ** 33)


class TestIter(BaseDataset):

    """

        Feature: Iterating over a dataset yields rows

    """

    def test_iter(self):
        """ Iterating over a dataset yields rows """
        data = np.arange(30, dtype='f').reshape((10, 3))
        dset = self.f.create_dataset('foo', data=data)
        for x, y in zip(dset, data):
            self.assertEqual(len(x), 3)
            self.assertArrayEqual(x, y)

    def test_iter_scalar(self):
        """ Iterating over scalar dataset raises TypeError """
        dset = self.f.create_dataset('foo', shape=())
        with self.assertRaises(TypeError):
            [x for x in dset]


class TestStrings(BaseDataset):

    """

        Feature: Datasets created with vlen and fixed datatypes correctly

        translate to and from HDF5

    """

    def test_vlen_bytes(self):
        """ Vlen bytes dataset maps to vlen ascii in the file """
        dt = h5py.string_dtype(encoding='ascii')
        ds = self.f.create_dataset('x', (100,), dtype=dt)
        tid = ds.id.get_type()
        self.assertEqual(type(tid), h5py.h5t.TypeStringID)
        self.assertEqual(tid.get_cset(), h5py.h5t.CSET_ASCII)
        string_info = h5py.check_string_dtype(ds.dtype)
        self.assertEqual(string_info.encoding, 'ascii')

    def test_vlen_bytes_fillvalue(self):
        """ Vlen bytes dataset handles fillvalue """
        dt = h5py.string_dtype(encoding='ascii')
        fill_value = b'bar'
        ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value)
        self.assertEqual(self.f['x'][0], fill_value)
        self.assertEqual(self.f['x'].asstr()[0], fill_value.decode())
        self.assertEqual(self.f['x'].fillvalue, fill_value)

    def test_vlen_unicode(self):
        """ Vlen unicode dataset maps to vlen utf-8 in the file """
        dt = h5py.string_dtype()
        ds = self.f.create_dataset('x', (100,), dtype=dt)
        tid = ds.id.get_type()
        self.assertEqual(type(tid), h5py.h5t.TypeStringID)
        self.assertEqual(tid.get_cset(), h5py.h5t.CSET_UTF8)
        string_info = h5py.check_string_dtype(ds.dtype)
        self.assertEqual(string_info.encoding, 'utf-8')

    def test_vlen_unicode_fillvalue(self):
        """ Vlen unicode dataset handles fillvalue """
        dt = h5py.string_dtype()
        fill_value = 'bár'
        ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value)
        self.assertEqual(self.f['x'][0], fill_value.encode("utf-8"))
        self.assertEqual(self.f['x'].asstr()[0], fill_value)
        self.assertEqual(self.f['x'].fillvalue, fill_value.encode("utf-8"))

    def test_fixed_ascii(self):
        """ Fixed-length bytes dataset maps to fixed-length ascii in the file

        """
        dt = np.dtype("|S10")
        ds = self.f.create_dataset('x', (100,), dtype=dt)
        tid = ds.id.get_type()
        self.assertEqual(type(tid), h5py.h5t.TypeStringID)
        self.assertFalse(tid.is_variable_str())
        self.assertEqual(tid.get_size(), 10)
        self.assertEqual(tid.get_cset(), h5py.h5t.CSET_ASCII)
        string_info = h5py.check_string_dtype(ds.dtype)
        self.assertEqual(string_info.encoding, 'ascii')
        self.assertEqual(string_info.length, 10)

    def test_fixed_bytes_fillvalue(self):
        """ Vlen bytes dataset handles fillvalue """
        dt = h5py.string_dtype(encoding='ascii', length=10)
        fill_value = b'bar'
        ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value)
        self.assertEqual(self.f['x'][0], fill_value)
        self.assertEqual(self.f['x'].asstr()[0], fill_value.decode())
        self.assertEqual(self.f['x'].fillvalue, fill_value)

    def test_fixed_utf8(self):
        dt = h5py.string_dtype(encoding='utf-8', length=5)
        ds = self.f.create_dataset('x', (100,), dtype=dt)
        tid = ds.id.get_type()
        self.assertEqual(tid.get_cset(), h5py.h5t.CSET_UTF8)
        s = 'cù'
        ds[0] = s.encode('utf-8')
        ds[1] = s
        ds[2:4] = [s, s]
        ds[4:6] = np.array([s, s], dtype=object)
        ds[6:8] = np.array([s.encode('utf-8')] * 2, dtype=dt)
        with self.assertRaises(TypeError):
            ds[8:10] = np.array([s, s], dtype='U')

        np.testing.assert_array_equal(ds[:8], np.array([s.encode('utf-8')] * 8, dtype='S'))

    def test_fixed_utf_8_fillvalue(self):
        """ Vlen unicode dataset handles fillvalue """
        dt = h5py.string_dtype(encoding='utf-8', length=10)
        fill_value = 'bár'.encode("utf-8")
        ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value)
        self.assertEqual(self.f['x'][0], fill_value)
        self.assertEqual(self.f['x'].asstr()[0], fill_value.decode("utf-8"))
        self.assertEqual(self.f['x'].fillvalue, fill_value)

    def test_fixed_unicode(self):
        """ Fixed-length unicode datasets are unsupported (raise TypeError) """
        dt = np.dtype("|U10")
        with self.assertRaises(TypeError):
            ds = self.f.create_dataset('x', (100,), dtype=dt)

    def test_roundtrip_vlen_bytes(self):
        """ writing and reading to vlen bytes dataset preserves type and content

        """
        dt = h5py.string_dtype(encoding='ascii')
        ds = self.f.create_dataset('x', (100,), dtype=dt)
        data = b"Hello\xef"
        ds[0] = data
        out = ds[0]
        self.assertEqual(type(out), bytes)
        self.assertEqual(out, data)

    def test_roundtrip_fixed_bytes(self):
        """ Writing to and reading from fixed-length bytes dataset preserves

        type and content """
        dt = np.dtype("|S10")
        ds = self.f.create_dataset('x', (100,), dtype=dt)
        data = b"Hello\xef"
        ds[0] = data
        out = ds[0]
        self.assertEqual(type(out), np.bytes_)
        self.assertEqual(out, data)

    def test_retrieve_vlen_unicode(self):
        dt = h5py.string_dtype()
        ds = self.f.create_dataset('x', (10,), dtype=dt)
        data = "fàilte"
        ds[0] = data
        self.assertIsInstance(ds[0], bytes)
        out = ds.asstr()[0]
        self.assertIsInstance(out, str)
        self.assertEqual(out, data)

    def test_asstr(self):
        ds = self.f.create_dataset('x', (10,), dtype=h5py.string_dtype())
        data = "fàilte"
        ds[0] = data

        strwrap1 = ds.asstr('ascii')
        with self.assertRaises(UnicodeDecodeError):
            out = strwrap1[0]

        # Different errors parameter
        self.assertEqual(ds.asstr('ascii', 'ignore')[0], 'filte')

        # latin-1 will decode it but give the wrong text
        self.assertNotEqual(ds.asstr('latin-1')[0], data)

        # len of ds
        self.assertEqual(10, len(ds.asstr()))

        # Array output
        np.testing.assert_array_equal(
            ds.asstr()[:1], np.array([data], dtype=object)
        )

        np.testing.assert_array_equal(
            np.asarray(ds.asstr())[:1], np.array([data], dtype=object)
        )

    def test_asstr_fixed(self):
        dt = h5py.string_dtype(length=5)
        ds = self.f.create_dataset('x', (10,), dtype=dt)
        data = 'cù'
        ds[0] = np.array(data.encode('utf-8'), dtype=dt)

        self.assertIsInstance(ds[0], np.bytes_)
        out = ds.asstr()[0]
        self.assertIsInstance(out, str)
        self.assertEqual(out, data)

        # Different errors parameter
        self.assertEqual(ds.asstr('ascii', 'ignore')[0], 'c')

        # latin-1 will decode it but give the wrong text
        self.assertNotEqual(ds.asstr('latin-1')[0], data)

        # Array output
        np.testing.assert_array_equal(
            ds.asstr()[:1], np.array([data], dtype=object)
        )

    def test_unicode_write_error(self):
        """Encoding error when writing a non-ASCII string to an ASCII vlen dataset"""
        dt = h5py.string_dtype('ascii')
        ds = self.f.create_dataset('x', (100,), dtype=dt)
        data = "fàilte"
        with self.assertRaises(UnicodeEncodeError):
            ds[0] = data

    def test_unicode_write_bytes(self):
        """ Writing valid utf-8 byte strings to a unicode vlen dataset is OK

        """
        dt = h5py.string_dtype()
        ds = self.f.create_dataset('x', (100,), dtype=dt)
        data = (u"Hello there" + chr(0x2034)).encode('utf8')
        ds[0] = data
        out = ds[0]
        self.assertEqual(type(out), bytes)
        self.assertEqual(out, data)

    def test_vlen_bytes_write_ascii_str(self):
        """ Writing an ascii str to ascii vlen dataset is OK

        """
        dt = h5py.string_dtype('ascii')
        ds = self.f.create_dataset('x', (100,), dtype=dt)
        data = "ASCII string"
        ds[0] = data
        out = ds[0]
        self.assertEqual(type(out), bytes)
        self.assertEqual(out, data.encode('ascii'))


class TestCompound(BaseDataset):

    """

        Feature: Compound types correctly round-trip

    """

    def test_rt(self):
        """ Compound types are read back in correct order (issue 236)"""

        dt = np.dtype([ ('weight', np.float64),
                             ('cputime', np.float64),
                             ('walltime', np.float64),
                             ('parents_offset', np.uint32),
                             ('n_parents', np.uint32),
                             ('status', np.uint8),
                             ('endpoint_type', np.uint8), ])

        testdata = np.ndarray((16,), dtype=dt)
        for key in dt.fields:
            testdata[key] = np.random.random((16,)) * 100

        self.f['test'] = testdata
        outdata = self.f['test'][...]
        self.assertTrue(np.all(outdata == testdata))
        self.assertEqual(outdata.dtype, testdata.dtype)

    def test_assign(self):
        dt = np.dtype([ ('weight', (np.float64, 3)),
                         ('endpoint_type', np.uint8), ])

        testdata = np.ndarray((16,), dtype=dt)
        for key in dt.fields:
            testdata[key] = np.random.random(size=testdata[key].shape) * 100

        ds = self.f.create_dataset('test', (16,), dtype=dt)
        for key in dt.fields:
            ds[key] = testdata[key]

        outdata = self.f['test'][...]

        self.assertTrue(np.all(outdata == testdata))
        self.assertEqual(outdata.dtype, testdata.dtype)

    def test_fields(self):
        dt = np.dtype([
            ('x', np.float64),
            ('y', np.float64),
            ('z', np.float64),
        ])

        testdata = np.ndarray((16,), dtype=dt)
        for key in dt.fields:
            testdata[key] = np.random.random((16,)) * 100

        self.f['test'] = testdata

        # Extract multiple fields
        np.testing.assert_array_equal(
            self.f['test'].fields(['x', 'y'])[:], testdata[['x', 'y']]
        )
        # Extract single field
        np.testing.assert_array_equal(
            self.f['test'].fields('x')[:], testdata['x']
        )
        # Check __array__() method of fields wrapper
        np.testing.assert_array_equal(
            np.asarray(self.f['test'].fields(['x', 'y'])), testdata[['x', 'y']]
        )
        # Check type conversion of __array__() method
        dt_int = np.dtype([('x', np.int32)])
        np.testing.assert_array_equal(
            np.asarray(self.f['test'].fields(['x']), dtype=dt_int),
            testdata[['x']].astype(dt_int)
        )

        # Check len() on fields wrapper
        assert len(self.f['test'].fields('x')) == 16

    def test_nested_compound_vlen(self):
        dt_inner = np.dtype([('a', h5py.vlen_dtype(np.int32)),
                            ('b', h5py.vlen_dtype(np.int32))])

        dt = np.dtype([('f1', h5py.vlen_dtype(dt_inner)),
                       ('f2', np.int64)])

        inner1 = (np.array(range(1, 3), dtype=np.int32),
                  np.array(range(6, 9), dtype=np.int32))

        inner2 = (np.array(range(10, 14), dtype=np.int32),
                  np.array(range(16, 21), dtype=np.int32))

        data = np.array([(np.array([inner1, inner2], dtype=dt_inner), 2),
                        (np.array([inner1], dtype=dt_inner), 3)],
                        dtype=dt)

        self.f["ds"] = data
        out = self.f["ds"]

        # Specifying check_alignment=False because vlen fields have 8 bytes of padding
        # because the vlen datatype in hdf5 occupies 16 bytes
        self.assertArrayEqual(out, data, check_alignment=False)


class TestSubarray(BaseDataset):
    def test_write_list(self):
        ds = self.f.create_dataset("a", (1,), dtype="3int8")
        ds[0] = [1, 2, 3]
        np.testing.assert_array_equal(ds[:], [[1, 2, 3]])

        ds[:] = [[4, 5, 6]]
        np.testing.assert_array_equal(ds[:], [[4, 5, 6]])

    def test_write_array(self):
        ds = self.f.create_dataset("a", (1,), dtype="3int8")
        ds[0] = np.array([1, 2, 3])
        np.testing.assert_array_equal(ds[:], [[1, 2, 3]])

        ds[:] = np.array([[4, 5, 6]])
        np.testing.assert_array_equal(ds[:], [[4, 5, 6]])


class TestEnum(BaseDataset):

    """

        Feature: Enum datatype info is preserved, read/write as integer

    """

    EDICT = {'RED': 0, 'GREEN': 1, 'BLUE': 42}

    def test_create(self):
        """ Enum datasets can be created and type correctly round-trips """
        dt = h5py.enum_dtype(self.EDICT, basetype='i')
        ds = self.f.create_dataset('x', (100, 100), dtype=dt)
        dt2 = ds.dtype
        dict2 = h5py.check_enum_dtype(dt2)
        self.assertEqual(dict2, self.EDICT)

    def test_readwrite(self):
        """ Enum datasets can be read/written as integers """
        dt = h5py.enum_dtype(self.EDICT, basetype='i4')
        ds = self.f.create_dataset('x', (100, 100), dtype=dt)
        ds[35, 37] = 42
        ds[1, :] = 1
        self.assertEqual(ds[35, 37], 42)
        self.assertArrayEqual(ds[1, :], np.array((1,) * 100, dtype='i4'))


class TestFloats(BaseDataset):

    """

        Test support for mini and extended-precision floats

    """

    def _exectest(self, dt):
        dset = self.f.create_dataset('x', (100,), dtype=dt)
        self.assertEqual(dset.dtype, dt)
        data = np.ones((100,), dtype=dt)
        dset[...] = data
        self.assertArrayEqual(dset[...], data)

    @ut.skipUnless(hasattr(np, 'float16'), "NumPy float16 support required")
    def test_mini(self):
        """ Mini-floats round trip """
        self._exectest(np.dtype('float16'))

    # TODO: move these tests to test_h5t
    def test_mini_mapping(self):
        """ Test mapping for float16 """
        if hasattr(np, 'float16'):
            self.assertEqual(h5t.IEEE_F16LE.dtype, np.dtype('<f2'))
        else:
            self.assertEqual(h5t.IEEE_F16LE.dtype, np.dtype('<f4'))


class TestTrackTimes(BaseDataset):

    """

        Feature: track_times

    """

    def test_disable_track_times(self):
        """ check that when track_times=False, the time stamp=0 (Jan 1, 1970) """
        ds = self.f.create_dataset('foo', (4,), track_times=False)
        ds_mtime = h5py.h5g.get_objinfo(ds._id).mtime
        self.assertEqual(0, ds_mtime)

    def test_invalid_track_times(self):
        """ check that when give track_times an invalid value """
        with self.assertRaises(TypeError):
            self.f.create_dataset('foo', (4,), track_times='null')


class TestZeroShape(BaseDataset):

    """

        Features of datasets with (0,)-shape axes

    """

    def test_array_conversion(self):
        """ Empty datasets can be converted to NumPy arrays """
        ds = self.f.create_dataset('x', 0, maxshape=None)
        self.assertEqual(ds.shape, np.array(ds).shape)

        ds = self.f.create_dataset('y', (0,), maxshape=(None,))
        self.assertEqual(ds.shape, np.array(ds).shape)

        ds = self.f.create_dataset('z', (0, 0), maxshape=(None, None))
        self.assertEqual(ds.shape, np.array(ds).shape)

    def test_reading(self):
        """ Slicing into empty datasets works correctly """
        dt = [('a', 'f'), ('b', 'i')]
        ds = self.f.create_dataset('x', (0,), dtype=dt, maxshape=(None,))
        arr = np.empty((0,), dtype=dt)

        self.assertEqual(ds[...].shape, arr.shape)
        self.assertEqual(ds[...].dtype, arr.dtype)
        self.assertEqual(ds[()].shape, arr.shape)
        self.assertEqual(ds[()].dtype, arr.dtype)

# https://github.com/h5py/h5py/issues/1492
empty_regionref_xfail = pytest.mark.xfail(
    h5py.version.hdf5_version_tuple == (1, 10, 6),
    reason="Issue with empty region refs in HDF5 1.10.6",
)

class TestRegionRefs(BaseDataset):

    """

        Various features of region references

    """

    def setUp(self):
        BaseDataset.setUp(self)
        self.data = np.arange(100 * 100).reshape((100, 100))
        self.dset = self.f.create_dataset('x', data=self.data)
        self.dset[...] = self.data

    def test_create_ref(self):
        """ Region references can be used as slicing arguments """
        slic = np.s_[25:35, 10:100:5]
        ref = self.dset.regionref[slic]
        self.assertArrayEqual(self.dset[ref], self.data[slic])

    @empty_regionref_xfail
    def test_empty_region(self):
        ref = self.dset.regionref[:0]
        out = self.dset[ref]
        assert out.size == 0
        # Ideally we should preserve shape (0, 100), but it seems this is lost.

    @empty_regionref_xfail
    def test_scalar_dataset(self):
        ds = self.f.create_dataset("scalar", data=1.0, dtype='f4')
        sid = h5py.h5s.create(h5py.h5s.SCALAR)

        # Deselected
        sid.select_none()
        ref = h5py.h5r.create(ds.id, b'.', h5py.h5r.DATASET_REGION, sid)
        assert ds[ref] == h5py.Empty(np.dtype('f4'))

        # Selected
        sid.select_all()
        ref = h5py.h5r.create(ds.id, b'.', h5py.h5r.DATASET_REGION, sid)
        assert ds[ref] == ds[()]

    def test_ref_shape(self):
        """ Region reference shape and selection shape """
        slic = np.s_[25:35, 10:100:5]
        ref = self.dset.regionref[slic]
        self.assertEqual(self.dset.regionref.shape(ref), self.dset.shape)
        self.assertEqual(self.dset.regionref.selection(ref), (10, 18))


class TestAstype(BaseDataset):
    """.astype() wrapper & context manager

    """
    def test_astype_wrapper(self):
        dset = self.f.create_dataset('x', (100,), dtype='i2')
        dset[...] = np.arange(100)
        arr = dset.astype('f4')[:]
        self.assertArrayEqual(arr, np.arange(100, dtype='f4'))


    def test_astype_wrapper_len(self):
        dset = self.f.create_dataset('x', (100,), dtype='i2')
        dset[...] = np.arange(100)
        self.assertEqual(100, len(dset.astype('f4')))

    def test_astype_wrapper_asarray(self):
        dset = self.f.create_dataset('x', (100,), dtype='i2')
        dset[...] = np.arange(100)
        arr = np.asarray(dset.astype('f4'), dtype='i2')
        self.assertArrayEqual(arr, np.arange(100, dtype='i2'))


class TestScalarCompound(BaseDataset):

    """

        Retrieval of a single field from a scalar compound dataset should

        strip the field info

    """

    def test_scalar_compound(self):

        dt = np.dtype([('a', 'i')])
        dset = self.f.create_dataset('x', (), dtype=dt)
        self.assertEqual(dset['a'].dtype, np.dtype('i'))


class TestVlen(BaseDataset):
    def test_int(self):
        dt = h5py.vlen_dtype(int)
        ds = self.f.create_dataset('vlen', (4,), dtype=dt)
        ds[0] = np.arange(3)
        ds[1] = np.arange(0)
        ds[2] = [1, 2, 3]
        ds[3] = np.arange(1)
        self.assertArrayEqual(ds[0], np.arange(3))
        self.assertArrayEqual(ds[1], np.arange(0))
        self.assertArrayEqual(ds[2], np.array([1, 2, 3]))
        self.assertArrayEqual(ds[1], np.arange(0))
        ds[0:2] = np.array([np.arange(5), np.arange(4)], dtype=object)
        self.assertArrayEqual(ds[0], np.arange(5))
        self.assertArrayEqual(ds[1], np.arange(4))
        ds[0:2] = np.array([np.arange(3), np.arange(3)])
        self.assertArrayEqual(ds[0], np.arange(3))
        self.assertArrayEqual(ds[1], np.arange(3))

    def test_reuse_from_other(self):
        dt = h5py.vlen_dtype(int)
        ds = self.f.create_dataset('vlen', (1,), dtype=dt)
        self.f.create_dataset('vlen2', (1,), ds[()].dtype)

    def test_reuse_struct_from_other(self):
        dt = [('a', int), ('b', h5py.vlen_dtype(int))]
        ds = self.f.create_dataset('vlen', (1,), dtype=dt)
        fname = self.f.filename
        self.f.close()
        self.f = h5py.File(fname, 'a')
        self.f.create_dataset('vlen2', (1,), self.f['vlen']['b'][()].dtype)

    def test_convert(self):
        dt = h5py.vlen_dtype(int)
        ds = self.f.create_dataset('vlen', (3,), dtype=dt)
        ds[0] = np.array([1.4, 1.2])
        ds[1] = np.array([1.2])
        ds[2] = [1.2, 2, 3]
        self.assertArrayEqual(ds[0], np.array([1, 1]))
        self.assertArrayEqual(ds[1], np.array([1]))
        self.assertArrayEqual(ds[2], np.array([1, 2, 3]))
        ds[0:2] = np.array([[0.1, 1.1, 2.1, 3.1, 4], np.arange(4)], dtype=object)
        self.assertArrayEqual(ds[0], np.arange(5))
        self.assertArrayEqual(ds[1], np.arange(4))
        ds[0:2] = np.array([np.array([0.1, 1.2, 2.2]),
                            np.array([0.2, 1.2, 2.2])])
        self.assertArrayEqual(ds[0], np.arange(3))
        self.assertArrayEqual(ds[1], np.arange(3))

    def test_multidim(self):
        dt = h5py.vlen_dtype(int)
        ds = self.f.create_dataset('vlen', (2, 2), dtype=dt)
        ds[0, 0] = np.arange(1)
        ds[:, :] = np.array([[np.arange(3), np.arange(2)],
                            [np.arange(1), np.arange(2)]], dtype=object)
        ds[:, :] = np.array([[np.arange(2), np.arange(2)],
                             [np.arange(2), np.arange(2)]])

    def _help_float_testing(self, np_dt, dataset_name='vlen'):
        """

        Helper for testing various vlen numpy data types.

        :param np_dt: Numpy datatype to test

        :param dataset_name: String name of the dataset to create for testing.

        """
        dt = h5py.vlen_dtype(np_dt)
        ds = self.f.create_dataset(dataset_name, (5,), dtype=dt)

        # Create some arrays, and assign them to the dataset
        array_0 = np.array([1., 2., 30.], dtype=np_dt)
        array_1 = np.array([100.3, 200.4, 98.1, -10.5, -300.0], dtype=np_dt)

        # Test that a numpy array of different type gets cast correctly
        array_2 = np.array([1, 2, 8], dtype=np.dtype('int32'))
        casted_array_2 = array_2.astype(np_dt)

        # Test that we can set a list of floats.
        list_3 = [1., 2., 900., 0., -0.5]
        list_array_3 = np.array(list_3, dtype=np_dt)

        # Test that a list of integers gets casted correctly
        list_4 = [-1, -100, 0, 1, 9999, 70]
        list_array_4 = np.array(list_4, dtype=np_dt)

        ds[0] = array_0
        ds[1] = array_1
        ds[2] = array_2
        ds[3] = list_3
        ds[4] = list_4

        self.assertArrayEqual(array_0, ds[0])
        self.assertArrayEqual(array_1, ds[1])
        self.assertArrayEqual(casted_array_2, ds[2])
        self.assertArrayEqual(list_array_3, ds[3])
        self.assertArrayEqual(list_array_4, ds[4])

        # Test that we can reassign arrays in the dataset
        list_array_3 = np.array([0.3, 2.2], dtype=np_dt)

        ds[0] = list_array_3[:]

        self.assertArrayEqual(list_array_3, ds[0])

        # Make sure we can close the file.
        self.f.flush()
        self.f.close()

    def test_numpy_float16(self):
        np_dt = np.dtype('float16')
        self._help_float_testing(np_dt)

    def test_numpy_float32(self):
        np_dt = np.dtype('float32')
        self._help_float_testing(np_dt)

    def test_numpy_float64_from_dtype(self):
        np_dt = np.dtype('float64')
        self._help_float_testing(np_dt)

    def test_numpy_float64_2(self):
        np_dt = np.float64
        self._help_float_testing(np_dt)

    def test_non_contiguous_arrays(self):
        """Test that non-contiguous arrays are stored correctly"""
        self.f.create_dataset('nc', (10,), dtype=h5py.vlen_dtype('bool'))
        x = np.array([True, False, True, True, False, False, False])
        self.f['nc'][0] = x[::2]

        assert all(self.f['nc'][0] == x[::2]), f"{self.f['nc'][0]} != {x[::2]}"

        self.f.create_dataset('nc2', (10,), dtype=h5py.vlen_dtype('int8'))
        y = np.array([2, 4, 1, 5, -1, 3, 7])
        self.f['nc2'][0] = y[::2]

        assert all(self.f['nc2'][0] == y[::2]), f"{self.f['nc2'][0]} != {y[::2]}"


class TestLowOpen(BaseDataset):

    def test_get_access_list(self):
        """ Test H5Dget_access_plist """
        ds = self.f.create_dataset('foo', (4,))
        p_list = ds.id.get_access_plist()

    def test_dapl(self):
        """ Test the dapl keyword to h5d.open """
        dapl = h5py.h5p.create(h5py.h5p.DATASET_ACCESS)
        dset = self.f.create_dataset('x', (100,))
        del dset
        dsid = h5py.h5d.open(self.f.id, b'x', dapl)
        self.assertIsInstance(dsid, h5py.h5d.DatasetID)


@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 10, 5),

               "chunk info requires  HDF5 >= 1.10.5")
def test_get_chunk_details():
    from io import BytesIO
    buf = BytesIO()
    with h5py.File(buf, 'w') as fout:
        fout.create_dataset('test', shape=(100, 100), chunks=(10, 10), dtype='i4')
        fout['test'][:] = 1

    buf.seek(0)
    with h5py.File(buf, 'r') as fin:
        ds = fin['test'].id

        assert ds.get_num_chunks() == 100
        for j in range(100):
            offset = tuple(np.array(np.unravel_index(j, (10, 10))) * 10)

            si = ds.get_chunk_info(j)
            assert si.chunk_offset == offset
            assert si.filter_mask == 0
            assert si.byte_offset is not None
            assert si.size > 0

        si = ds.get_chunk_info_by_coord((0, 0))
        assert si.chunk_offset == (0, 0)
        assert si.filter_mask == 0
        assert si.byte_offset is not None
        assert si.size > 0


@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 12, 3) or

               (h5py.version.hdf5_version_tuple >= (1, 10, 10) and h5py.version.hdf5_version_tuple < (1, 10, 99)),

               "chunk iteration requires  HDF5 1.10.10 and later 1.10, or 1.12.3 and later")
def test_chunk_iter():
    """H5Dchunk_iter() for chunk information"""
    from io import BytesIO
    buf = BytesIO()
    with h5py.File(buf, 'w') as f:
        f.create_dataset('test', shape=(100, 100), chunks=(10, 10), dtype='i4')
        f['test'][:] = 1

    buf.seek(0)
    with h5py.File(buf, 'r') as f:
        dsid = f['test'].id

        num_chunks = dsid.get_num_chunks()
        assert num_chunks == 100
        ci = {}
        for j in range(num_chunks):
            si = dsid.get_chunk_info(j)
            ci[si.chunk_offset] = si

        def callback(chunk_info):
            known = ci[chunk_info.chunk_offset]
            assert chunk_info.chunk_offset == known.chunk_offset
            assert chunk_info.filter_mask == known.filter_mask
            assert chunk_info.byte_offset == known.byte_offset
            assert chunk_info.size == known.size

        dsid.chunk_iter(callback)


def test_empty_shape(writable_file):
    ds = writable_file.create_dataset('empty', dtype='int32')
    assert ds.shape is None
    assert ds.maxshape is None


def test_zero_storage_size():
    # https://github.com/h5py/h5py/issues/1475
    from io import BytesIO
    buf = BytesIO()
    with h5py.File(buf, 'w') as fout:
        fout.create_dataset('empty', dtype='uint8')

    buf.seek(0)
    with h5py.File(buf, 'r') as fin:
        assert fin['empty'].chunks is None
        assert fin['empty'].id.get_offset() is None
        assert fin['empty'].id.get_storage_size() == 0


def test_python_int_uint64(writable_file):
    # https://github.com/h5py/h5py/issues/1547
    data = [np.iinfo(np.int64).max, np.iinfo(np.int64).max + 1]

    # Check creating a new dataset
    ds = writable_file.create_dataset('x', data=data, dtype=np.uint64)
    assert ds.dtype == np.dtype(np.uint64)
    np.testing.assert_array_equal(ds[:], np.array(data, dtype=np.uint64))

    # Check writing to an existing dataset
    ds[:] = data
    np.testing.assert_array_equal(ds[:], np.array(data, dtype=np.uint64))


def test_setitem_fancy_indexing(writable_file):
    # https://github.com/h5py/h5py/issues/1593
    arr = writable_file.create_dataset('data', (5, 1000, 2), dtype=np.uint8)
    block = np.random.randint(255, size=(5, 3, 2))
    arr[:, [0, 2, 4], ...] = block


def test_vlen_spacepad():
    with File(get_data_file_path("vlen_string_dset.h5")) as f:
        assert f["DS1"][0] == b"Parting"


def test_vlen_nullterm():
    with File(get_data_file_path("vlen_string_dset_utc.h5")) as f:
        assert f["ds1"][0] == b"2009-12-20T10:16:18.662409Z"


def test_allow_unknown_filter(writable_file):
    # apparently 256-511 are reserved for testing purposes
    fake_filter_id = 256
    ds = writable_file.create_dataset(
        'data', shape=(10, 10), dtype=np.uint8, compression=fake_filter_id,
        allow_unknown_filter=True
    )
    assert str(fake_filter_id) in ds._filters


def test_dset_chunk_cache():
    """Chunk cache configuration for individual datasets."""
    from io import BytesIO
    buf = BytesIO()
    with h5py.File(buf, 'w') as fout:
        ds = fout.create_dataset(
            'x', shape=(10, 20), chunks=(5, 4), dtype='i4',
            rdcc_nbytes=2 * 1024 * 1024, rdcc_w0=0.2, rdcc_nslots=997)
        ds_chunk_cache = ds.id.get_access_plist().get_chunk_cache()
        assert fout.id.get_access_plist().get_cache()[1:] != ds_chunk_cache
        assert ds_chunk_cache == (997, 2 * 1024 * 1024, 0.2)

    buf.seek(0)
    with h5py.File(buf, 'r') as fin:
        ds = fin.require_dataset(
            'x', shape=(10, 20), dtype='i4',
            rdcc_nbytes=3 * 1024 * 1024, rdcc_w0=0.67, rdcc_nslots=709)
        ds_chunk_cache = ds.id.get_access_plist().get_chunk_cache()
        assert fin.id.get_access_plist().get_cache()[1:] != ds_chunk_cache
        assert ds_chunk_cache == (709, 3 * 1024 * 1024, 0.67)


class TestCommutative(BaseDataset):
    """

    Test the symmetry of operators, at least with the numpy types.

    Issue: https://github.com/h5py/h5py/issues/1947

    """
    def test_numpy_commutative(self,):
        """

        Create a h5py dataset, extract one element convert to numpy

        Check that it returns symmetric response to == and !=

        """
        shape = (100,1)
        dset = self.f.create_dataset("test", shape, dtype=float,
                                     data=np.random.rand(*shape))

        # grab a value from the elements, ie dset[0, 0]
        # check that mask arrays are commutative wrt ==, !=
        val = np.float64(dset[0, 0])

        assert np.all((val == dset) == (dset == val))
        assert np.all((val != dset) == (dset != val))

        # generate sample not in the dset, ie max(dset)+delta
        # check that mask arrays are commutative wrt ==, !=
        delta = 0.001
        nval = np.nanmax(dset)+delta

        assert np.all((nval == dset) == (dset == nval))
        assert np.all((nval != dset) == (dset != nval))

    def test_basetype_commutative(self,):
        """

        Create a h5py dataset and check basetype compatibility.

        Check that operation is symmetric, even if it is potentially

        not meaningful.

        """
        shape = (100,1)
        dset = self.f.create_dataset("test", shape, dtype=float,
                                     data=np.random.rand(*shape))

        # generate float type, sample float(0.)
        # check that operation is symmetric (but potentially meaningless)
        val = float(0.)
        assert (val == dset) == (dset == val)
        assert (val != dset) == (dset != val)

class TestVirtualPrefix(BaseDataset):
    """

    Test setting virtual prefix

    """
    def test_virtual_prefix_create(self):
        shape = (100,1)
        virtual_prefix = "/path/to/virtual"
        dset = self.f.create_dataset("test", shape, dtype=float,
                                     data=np.random.rand(*shape),
                                     virtual_prefix = virtual_prefix)

        virtual_prefix_readback = pathlib.Path(dset.id.get_access_plist().get_virtual_prefix().decode()).as_posix()
        assert virtual_prefix_readback == virtual_prefix

    def test_virtual_prefix_require(self):
        virtual_prefix = "/path/to/virtual"
        dset = self.f.require_dataset('foo', (10, 3), 'f', virtual_prefix = virtual_prefix)
        virtual_prefix_readback = pathlib.Path(dset.id.get_access_plist().get_virtual_prefix().decode()).as_posix()
        self.assertEqual(virtual_prefix, virtual_prefix_readback)
        self.assertIsInstance(dset, Dataset)
        self.assertEqual(dset.shape, (10, 3))