File size: 51,570 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
from ..libmp.backend import xrange
from .functions import defun, defun_wrapped

def _check_need_perturb(ctx, terms, prec, discard_known_zeros):
    perturb = recompute = False
    extraprec = 0
    discard = []
    for term_index, term in enumerate(terms):
        w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term
        have_singular_nongamma_weight = False
        # Avoid division by zero in leading factors (TODO:
        # also check for near division by zero?)
        for k, w in enumerate(w_s):
            if not w:
                if ctx.re(c_s[k]) <= 0 and c_s[k]:
                    perturb = recompute = True
                    have_singular_nongamma_weight = True
        pole_count = [0, 0, 0]
        # Check for gamma and series poles and near-poles
        for data_index, data in enumerate([alpha_s, beta_s, b_s]):
            for i, x in enumerate(data):
                n, d = ctx.nint_distance(x)
                # Poles
                if n > 0:
                    continue
                if d == ctx.ninf:
                    # OK if we have a polynomial
                    # ------------------------------
                    ok = False
                    if data_index == 2:
                        for u in a_s:
                            if ctx.isnpint(u) and u >= int(n):
                                ok = True
                                break
                    if ok:
                        continue
                    pole_count[data_index] += 1
                    # ------------------------------
                    #perturb = recompute = True
                    #return perturb, recompute, extraprec
                elif d < -4:
                    extraprec += -d
                    recompute = True
        if discard_known_zeros and pole_count[1] > pole_count[0] + pole_count[2] \
            and not have_singular_nongamma_weight:
            discard.append(term_index)
        elif sum(pole_count):
            perturb = recompute = True
    return perturb, recompute, extraprec, discard

_hypercomb_msg = """
hypercomb() failed to converge to the requested %i bits of accuracy
using a working precision of %i bits. The function value may be zero or
infinite; try passing zeroprec=N or infprec=M to bound finite values between
2^(-N) and 2^M. Otherwise try a higher maxprec or maxterms.
"""

@defun
def hypercomb(ctx, function, params=[], discard_known_zeros=True, **kwargs):
    orig = ctx.prec
    sumvalue = ctx.zero
    dist = ctx.nint_distance
    ninf = ctx.ninf
    orig_params = params[:]
    verbose = kwargs.get('verbose', False)
    maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(orig))
    kwargs['maxprec'] = maxprec   # For calls to hypsum
    zeroprec = kwargs.get('zeroprec')
    infprec = kwargs.get('infprec')
    perturbed_reference_value = None
    hextra = 0
    try:
        while 1:
            ctx.prec += 10
            if ctx.prec > maxprec:
                raise ValueError(_hypercomb_msg % (orig, ctx.prec))
            orig2 = ctx.prec
            params = orig_params[:]
            terms = function(*params)
            if verbose:
                print()
                print("ENTERING hypercomb main loop")
                print("prec =", ctx.prec)
                print("hextra", hextra)
            perturb, recompute, extraprec, discard = \
                _check_need_perturb(ctx, terms, orig, discard_known_zeros)
            ctx.prec += extraprec
            if perturb:
                if "hmag" in kwargs:
                    hmag = kwargs["hmag"]
                elif ctx._fixed_precision:
                    hmag = int(ctx.prec*0.3)
                else:
                    hmag = orig + 10 + hextra
                h = ctx.ldexp(ctx.one, -hmag)
                ctx.prec = orig2 + 10 + hmag + 10
                for k in range(len(params)):
                    params[k] += h
                    # Heuristically ensure that the perturbations
                    # are "independent" so that two perturbations
                    # don't accidentally cancel each other out
                    # in a subtraction.
                    h += h/(k+1)
            if recompute:
                terms = function(*params)
            if discard_known_zeros:
                terms = [term for (i, term) in enumerate(terms) if i not in discard]
            if not terms:
                return ctx.zero
            evaluated_terms = []
            for term_index, term_data in enumerate(terms):
                w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term_data
                if verbose:
                    print()
                    print("  Evaluating term %i/%i : %iF%i" % \
                        (term_index+1, len(terms), len(a_s), len(b_s)))
                    print("    powers", ctx.nstr(w_s), ctx.nstr(c_s))
                    print("    gamma", ctx.nstr(alpha_s), ctx.nstr(beta_s))
                    print("    hyper", ctx.nstr(a_s), ctx.nstr(b_s))
                    print("    z", ctx.nstr(z))
                #v = ctx.hyper(a_s, b_s, z, **kwargs)
                #for a in alpha_s: v *= ctx.gamma(a)
                #for b in beta_s: v *= ctx.rgamma(b)
                #for w, c in zip(w_s, c_s): v *= ctx.power(w, c)
                v = ctx.fprod([ctx.hyper(a_s, b_s, z, **kwargs)] + \
                    [ctx.gamma(a) for a in alpha_s] + \
                    [ctx.rgamma(b) for b in beta_s] + \
                    [ctx.power(w,c) for (w,c) in zip(w_s,c_s)])
                if verbose:
                    print("    Value:", v)
                evaluated_terms.append(v)

            if len(terms) == 1 and (not perturb):
                sumvalue = evaluated_terms[0]
                break

            if ctx._fixed_precision:
                sumvalue = ctx.fsum(evaluated_terms)
                break

            sumvalue = ctx.fsum(evaluated_terms)
            term_magnitudes = [ctx.mag(x) for x in evaluated_terms]
            max_magnitude = max(term_magnitudes)
            sum_magnitude = ctx.mag(sumvalue)
            cancellation = max_magnitude - sum_magnitude
            if verbose:
                print()
                print("  Cancellation:", cancellation, "bits")
                print("  Increased precision:", ctx.prec - orig, "bits")

            precision_ok = cancellation < ctx.prec - orig

            if zeroprec is None:
                zero_ok = False
            else:
                zero_ok = max_magnitude - ctx.prec < -zeroprec
            if infprec is None:
                inf_ok = False
            else:
                inf_ok = max_magnitude > infprec

            if precision_ok and (not perturb) or ctx.isnan(cancellation):
                break
            elif precision_ok:
                if perturbed_reference_value is None:
                    hextra += 20
                    perturbed_reference_value = sumvalue
                    continue
                elif ctx.mag(sumvalue - perturbed_reference_value) <= \
                        ctx.mag(sumvalue) - orig:
                    break
                elif zero_ok:
                    sumvalue = ctx.zero
                    break
                elif inf_ok:
                    sumvalue = ctx.inf
                    break
                elif 'hmag' in kwargs:
                    break
                else:
                    hextra *= 2
                    perturbed_reference_value = sumvalue
            # Increase precision
            else:
                increment = min(max(cancellation, orig//2), max(extraprec,orig))
                ctx.prec += increment
                if verbose:
                    print("  Must start over with increased precision")
                continue
    finally:
        ctx.prec = orig
    return +sumvalue

@defun
def hyper(ctx, a_s, b_s, z, **kwargs):
    """
    Hypergeometric function, general case.
    """
    z = ctx.convert(z)
    p = len(a_s)
    q = len(b_s)
    a_s = [ctx._convert_param(a) for a in a_s]
    b_s = [ctx._convert_param(b) for b in b_s]
    # Reduce degree by eliminating common parameters
    if kwargs.get('eliminate', True):
        elim_nonpositive = kwargs.get('eliminate_all', False)
        i = 0
        while i < q and a_s:
            b = b_s[i]
            if b in a_s and (elim_nonpositive or not ctx.isnpint(b[0])):
                a_s.remove(b)
                b_s.remove(b)
                p -= 1
                q -= 1
            else:
                i += 1
    # Handle special cases
    if p == 0:
        if   q == 1: return ctx._hyp0f1(b_s, z, **kwargs)
        elif q == 0: return ctx.exp(z)
    elif p == 1:
        if   q == 1: return ctx._hyp1f1(a_s, b_s, z, **kwargs)
        elif q == 2: return ctx._hyp1f2(a_s, b_s, z, **kwargs)
        elif q == 0: return ctx._hyp1f0(a_s[0][0], z)
    elif p == 2:
        if   q == 1: return ctx._hyp2f1(a_s, b_s, z, **kwargs)
        elif q == 2: return ctx._hyp2f2(a_s, b_s, z, **kwargs)
        elif q == 3: return ctx._hyp2f3(a_s, b_s, z, **kwargs)
        elif q == 0: return ctx._hyp2f0(a_s, b_s, z, **kwargs)
    elif p == q+1:
        return ctx._hypq1fq(p, q, a_s, b_s, z, **kwargs)
    elif p > q+1 and not kwargs.get('force_series'):
        return ctx._hyp_borel(p, q, a_s, b_s, z, **kwargs)
    coeffs, types = zip(*(a_s+b_s))
    return ctx.hypsum(p, q, types, coeffs, z, **kwargs)

@defun
def hyp0f1(ctx,b,z,**kwargs):
    return ctx.hyper([],[b],z,**kwargs)

@defun
def hyp1f1(ctx,a,b,z,**kwargs):
    return ctx.hyper([a],[b],z,**kwargs)

@defun
def hyp1f2(ctx,a1,b1,b2,z,**kwargs):
    return ctx.hyper([a1],[b1,b2],z,**kwargs)

@defun
def hyp2f1(ctx,a,b,c,z,**kwargs):
    return ctx.hyper([a,b],[c],z,**kwargs)

@defun
def hyp2f2(ctx,a1,a2,b1,b2,z,**kwargs):
    return ctx.hyper([a1,a2],[b1,b2],z,**kwargs)

@defun
def hyp2f3(ctx,a1,a2,b1,b2,b3,z,**kwargs):
    return ctx.hyper([a1,a2],[b1,b2,b3],z,**kwargs)

@defun
def hyp2f0(ctx,a,b,z,**kwargs):
    return ctx.hyper([a,b],[],z,**kwargs)

@defun
def hyp3f2(ctx,a1,a2,a3,b1,b2,z,**kwargs):
    return ctx.hyper([a1,a2,a3],[b1,b2],z,**kwargs)

@defun_wrapped
def _hyp1f0(ctx, a, z):
    return (1-z) ** (-a)

@defun
def _hyp0f1(ctx, b_s, z, **kwargs):
    (b, btype), = b_s
    if z:
        magz = ctx.mag(z)
    else:
        magz = 0
    if magz >= 8 and not kwargs.get('force_series'):
        try:
            # http://functions.wolfram.com/HypergeometricFunctions/
            # Hypergeometric0F1/06/02/03/0004/
            # TODO: handle the all-real case more efficiently!
            # TODO: figure out how much precision is needed (exponential growth)
            orig = ctx.prec
            try:
                ctx.prec += 12 + magz//2
                def h():
                    w = ctx.sqrt(-z)
                    jw = ctx.j*w
                    u = 1/(4*jw)
                    c = ctx.mpq_1_2 - b
                    E = ctx.exp(2*jw)
                    T1 = ([-jw,E], [c,-1], [], [], [b-ctx.mpq_1_2, ctx.mpq_3_2-b], [], -u)
                    T2 = ([jw,E], [c,1], [], [], [b-ctx.mpq_1_2, ctx.mpq_3_2-b], [], u)
                    return T1, T2
                v = ctx.hypercomb(h, [], force_series=True)
                v = ctx.gamma(b)/(2*ctx.sqrt(ctx.pi))*v
            finally:
                ctx.prec = orig
            if ctx._is_real_type(b) and ctx._is_real_type(z):
                v = ctx._re(v)
            return +v
        except ctx.NoConvergence:
            pass
    return ctx.hypsum(0, 1, (btype,), [b], z, **kwargs)

@defun
def _hyp1f1(ctx, a_s, b_s, z, **kwargs):
    (a, atype), = a_s
    (b, btype), = b_s
    if not z:
        return ctx.one+z
    magz = ctx.mag(z)
    if magz >= 7 and not (ctx.isint(a) and ctx.re(a) <= 0):
        if ctx.isinf(z):
            if ctx.sign(a) == ctx.sign(b) == ctx.sign(z) == 1:
                return ctx.inf
            return ctx.nan * z
        try:
            try:
                ctx.prec += magz
                sector = ctx._im(z) < 0
                def h(a,b):
                    if sector:
                        E = ctx.expjpi(ctx.fneg(a, exact=True))
                    else:
                        E = ctx.expjpi(a)
                    rz = 1/z
                    T1 = ([E,z], [1,-a], [b], [b-a], [a, 1+a-b], [], -rz)
                    T2 = ([ctx.exp(z),z], [1,a-b], [b], [a], [b-a, 1-a], [], rz)
                    return T1, T2
                v = ctx.hypercomb(h, [a,b], force_series=True)
                if ctx._is_real_type(a) and ctx._is_real_type(b) and ctx._is_real_type(z):
                    v = ctx._re(v)
                return +v
            except ctx.NoConvergence:
                pass
        finally:
            ctx.prec -= magz
    v = ctx.hypsum(1, 1, (atype, btype), [a, b], z, **kwargs)
    return v

def _hyp2f1_gosper(ctx,a,b,c,z,**kwargs):
    # Use Gosper's recurrence
    # See http://www.math.utexas.edu/pipermail/maxima/2006/000126.html
    _a,_b,_c,_z = a, b, c, z
    orig = ctx.prec
    maxprec = kwargs.get('maxprec', 100*orig)
    extra = 10
    while 1:
        ctx.prec = orig + extra
        #a = ctx.convert(_a)
        #b = ctx.convert(_b)
        #c = ctx.convert(_c)
        z = ctx.convert(_z)
        d = ctx.mpf(0)
        e = ctx.mpf(1)
        f = ctx.mpf(0)
        k = 0
        # Common subexpression elimination, unfortunately making
        # things a bit unreadable. The formula is quite messy to begin
        # with, though...
        abz = a*b*z
        ch = c * ctx.mpq_1_2
        c1h = (c+1) * ctx.mpq_1_2
        nz = 1-z
        g = z/nz
        abg = a*b*g
        cba = c-b-a
        z2 = z-2
        tol = -ctx.prec - 10
        nstr = ctx.nstr
        nprint = ctx.nprint
        mag = ctx.mag
        maxmag = ctx.ninf
        while 1:
            kch = k+ch
            kakbz = (k+a)*(k+b)*z / (4*(k+1)*kch*(k+c1h))
            d1 = kakbz*(e-(k+cba)*d*g)
            e1 = kakbz*(d*abg+(k+c)*e)
            ft = d*(k*(cba*z+k*z2-c)-abz)/(2*kch*nz)
            f1 = f + e - ft
            maxmag = max(maxmag, mag(f1))
            if mag(f1-f) < tol:
                break
            d, e, f = d1, e1, f1
            k += 1
        cancellation = maxmag - mag(f1)
        if cancellation < extra:
            break
        else:
            extra += cancellation
            if extra > maxprec:
                raise ctx.NoConvergence
    return f1

@defun
def _hyp2f1(ctx, a_s, b_s, z, **kwargs):
    (a, atype), (b, btype) = a_s
    (c, ctype), = b_s
    if z == 1:
        # TODO: the following logic can be simplified
        convergent = ctx.re(c-a-b) > 0
        finite = (ctx.isint(a) and a <= 0) or (ctx.isint(b) and b <= 0)
        zerodiv = ctx.isint(c) and c <= 0 and not \
            ((ctx.isint(a) and c <= a <= 0) or (ctx.isint(b) and c <= b <= 0))
        #print "bz", a, b, c, z, convergent, finite, zerodiv
        # Gauss's theorem gives the value if convergent
        if (convergent or finite) and not zerodiv:
            return ctx.gammaprod([c, c-a-b], [c-a, c-b], _infsign=True)
        # Otherwise, there is a pole and we take the
        # sign to be that when approaching from below
        # XXX: this evaluation is not necessarily correct in all cases
        return ctx.hyp2f1(a,b,c,1-ctx.eps*2) * ctx.inf

    # Equal to 1 (first term), unless there is a subsequent
    # division by zero
    if not z:
        # Division by zero but power of z is higher than
        # first order so cancels
        if c or a == 0 or b == 0:
            return 1+z
        # Indeterminate
        return ctx.nan

    # Hit zero denominator unless numerator goes to 0 first
    if ctx.isint(c) and c <= 0:
        if (ctx.isint(a) and c <= a <= 0) or \
           (ctx.isint(b) and c <= b <= 0):
            pass
        else:
            # Pole in series
            return ctx.inf

    absz = abs(z)

    # Fast case: standard series converges rapidly,
    # possibly in finitely many terms
    if absz <= 0.8 or (ctx.isint(a) and a <= 0 and a >= -1000) or \
                      (ctx.isint(b) and b <= 0 and b >= -1000):
        return ctx.hypsum(2, 1, (atype, btype, ctype), [a, b, c], z, **kwargs)

    orig = ctx.prec
    try:
        ctx.prec += 10

        # Use 1/z transformation
        if absz >= 1.3:
            def h(a,b):
                t = ctx.mpq_1-c; ab = a-b; rz = 1/z
                T1 = ([-z],[-a], [c,-ab],[b,c-a], [a,t+a],[ctx.mpq_1+ab],  rz)
                T2 = ([-z],[-b], [c,ab],[a,c-b], [b,t+b],[ctx.mpq_1-ab],  rz)
                return T1, T2
            v = ctx.hypercomb(h, [a,b], **kwargs)

        # Use 1-z transformation
        elif abs(1-z) <= 0.75:
            def h(a,b):
                t = c-a-b; ca = c-a; cb = c-b; rz = 1-z
                T1 = [], [], [c,t], [ca,cb], [a,b], [1-t], rz
                T2 = [rz], [t], [c,a+b-c], [a,b], [ca,cb], [1+t], rz
                return T1, T2
            v = ctx.hypercomb(h, [a,b], **kwargs)

        # Use z/(z-1) transformation
        elif abs(z/(z-1)) <= 0.75:
            v = ctx.hyp2f1(a, c-b, c, z/(z-1)) / (1-z)**a

        # Remaining part of unit circle
        else:
            v = _hyp2f1_gosper(ctx,a,b,c,z,**kwargs)

    finally:
        ctx.prec = orig
    return +v

@defun
def _hypq1fq(ctx, p, q, a_s, b_s, z, **kwargs):
    r"""
    Evaluates 3F2, 4F3, 5F4, ...
    """
    a_s, a_types = zip(*a_s)
    b_s, b_types = zip(*b_s)
    a_s = list(a_s)
    b_s = list(b_s)
    absz = abs(z)
    ispoly = False
    for a in a_s:
        if ctx.isint(a) and a <= 0:
            ispoly = True
            break
    # Direct summation
    if absz < 1 or ispoly:
        try:
            return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs)
        except ctx.NoConvergence:
            if absz > 1.1 or ispoly:
                raise
    # Use expansion at |z-1| -> 0.
    # Reference: Wolfgang Buhring, "Generalized Hypergeometric Functions at
    #   Unit Argument", Proc. Amer. Math. Soc., Vol. 114, No. 1 (Jan. 1992),
    #   pp.145-153
    # The current implementation has several problems:
    # 1. We only implement it for 3F2. The expansion coefficients are
    #    given by extremely messy nested sums in the higher degree cases
    #    (see reference). Is efficient sequential generation of the coefficients
    #    possible in the > 3F2 case?
    # 2. Although the series converges, it may do so slowly, so we need
    #    convergence acceleration. The acceleration implemented by
    #    nsum does not always help, so results returned are sometimes
    #    inaccurate! Can we do better?
    # 3. We should check conditions for convergence, and possibly
    #    do a better job of cancelling out gamma poles if possible.
    if z == 1:
        # XXX: should also check for division by zero in the
        # denominator of the series (cf. hyp2f1)
        S = ctx.re(sum(b_s)-sum(a_s))
        if S <= 0:
            #return ctx.hyper(a_s, b_s, 1-ctx.eps*2, **kwargs) * ctx.inf
            return ctx.hyper(a_s, b_s, 0.9, **kwargs) * ctx.inf
    if (p,q) == (3,2) and abs(z-1) < 0.05:   # and kwargs.get('sum1')
        #print "Using alternate summation (experimental)"
        a1,a2,a3 = a_s
        b1,b2 = b_s
        u = b1+b2-a3
        initial = ctx.gammaprod([b2-a3,b1-a3,a1,a2],[b2-a3,b1-a3,1,u])
        def term(k, _cache={0:initial}):
            u = b1+b2-a3+k
            if k in _cache:
                t = _cache[k]
            else:
                t = _cache[k-1]
                t *= (b1+k-a3-1)*(b2+k-a3-1)
                t /= k*(u-1)
                _cache[k] = t
            return t * ctx.hyp2f1(a1,a2,u,z)
        try:
            S = ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'),
                strict=kwargs.get('strict', True))
            return S * ctx.gammaprod([b1,b2],[a1,a2,a3])
        except ctx.NoConvergence:
            pass
    # Try to use convergence acceleration on and close to the unit circle.
    # Problem: the convergence acceleration degenerates as |z-1| -> 0,
    # except for special cases. Everywhere else, the Shanks transformation
    # is very efficient.
    if absz < 1.1 and ctx._re(z) <= 1:

        def term(kk, _cache={0:ctx.one}):
            k = int(kk)
            if k != kk:
                t = z ** ctx.mpf(kk) / ctx.fac(kk)
                for a in a_s: t *= ctx.rf(a,kk)
                for b in b_s: t /= ctx.rf(b,kk)
                return t
            if k in _cache:
                return _cache[k]
            t = term(k-1)
            m = k-1
            for j in xrange(p): t *= (a_s[j]+m)
            for j in xrange(q): t /= (b_s[j]+m)
            t *= z
            t /= k
            _cache[k] = t
            return t

        sum_method = kwargs.get('sum_method', 'r+s+e')

        try:
            return ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'),
                strict=kwargs.get('strict', True),
                method=sum_method.replace('e',''))
        except ctx.NoConvergence:
            if 'e' not in sum_method:
                raise
            pass

        if kwargs.get('verbose'):
            print("Attempting Euler-Maclaurin summation")


        """
        Somewhat slower version (one diffs_exp for each factor).
        However, this would be faster with fast direct derivatives
        of the gamma function.

        def power_diffs(k0):
            r = 0
            l = ctx.log(z)
            while 1:
                yield z**ctx.mpf(k0) * l**r
                r += 1

        def loggamma_diffs(x, reciprocal=False):
            sign = (-1) ** reciprocal
            yield sign * ctx.loggamma(x)
            i = 0
            while 1:
                yield sign * ctx.psi(i,x)
                i += 1

        def hyper_diffs(k0):
            b2 = b_s + [1]
            A = [ctx.diffs_exp(loggamma_diffs(a+k0)) for a in a_s]
            B = [ctx.diffs_exp(loggamma_diffs(b+k0,True)) for b in b2]
            Z = [power_diffs(k0)]
            C = ctx.gammaprod([b for b in b2], [a for a in a_s])
            for d in ctx.diffs_prod(A + B + Z):
                v = C * d
                yield v
        """

        def log_diffs(k0):
            b2 = b_s + [1]
            yield sum(ctx.loggamma(a+k0) for a in a_s) - \
                sum(ctx.loggamma(b+k0) for b in b2) + k0*ctx.log(z)
            i = 0
            while 1:
                v = sum(ctx.psi(i,a+k0) for a in a_s) - \
                    sum(ctx.psi(i,b+k0) for b in b2)
                if i == 0:
                    v += ctx.log(z)
                yield v
                i += 1

        def hyper_diffs(k0):
            C = ctx.gammaprod([b for b in b_s], [a for a in a_s])
            for d in ctx.diffs_exp(log_diffs(k0)):
                v = C * d
                yield v

        tol = ctx.eps / 1024
        prec = ctx.prec
        try:
            trunc = 50 * ctx.dps
            ctx.prec += 20
            for i in xrange(5):
                head = ctx.fsum(term(k) for k in xrange(trunc))
                tail, err = ctx.sumem(term, [trunc, ctx.inf], tol=tol,
                    adiffs=hyper_diffs(trunc),
                    verbose=kwargs.get('verbose'),
                    error=True,
                    _fast_abort=True)
                if err < tol:
                    v = head + tail
                    break
                trunc *= 2
                # Need to increase precision because calculation of
                # derivatives may be inaccurate
                ctx.prec += ctx.prec//2
                if i == 4:
                    raise ctx.NoConvergence(\
                        "Euler-Maclaurin summation did not converge")
        finally:
            ctx.prec = prec
        return +v

    # Use 1/z transformation
    # http://functions.wolfram.com/HypergeometricFunctions/
    #   HypergeometricPFQ/06/01/05/02/0004/
    def h(*args):
        a_s = list(args[:p])
        b_s = list(args[p:])
        Ts = []
        recz = ctx.one/z
        negz = ctx.fneg(z, exact=True)
        for k in range(q+1):
            ak = a_s[k]
            C = [negz]
            Cp = [-ak]
            Gn = b_s + [ak] + [a_s[j]-ak for j in range(q+1) if j != k]
            Gd = a_s + [b_s[j]-ak for j in range(q)]
            Fn = [ak] + [ak-b_s[j]+1 for j in range(q)]
            Fd = [1-a_s[j]+ak for j in range(q+1) if j != k]
            Ts.append((C, Cp, Gn, Gd, Fn, Fd, recz))
        return Ts
    return ctx.hypercomb(h, a_s+b_s, **kwargs)

@defun
def _hyp_borel(ctx, p, q, a_s, b_s, z, **kwargs):
    if a_s:
        a_s, a_types = zip(*a_s)
        a_s = list(a_s)
    else:
        a_s, a_types = [], ()
    if b_s:
        b_s, b_types = zip(*b_s)
        b_s = list(b_s)
    else:
        b_s, b_types = [], ()
    kwargs['maxterms'] = kwargs.get('maxterms', ctx.prec)
    try:
        return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs)
    except ctx.NoConvergence:
        pass
    prec = ctx.prec
    try:
        tol = kwargs.get('asymp_tol', ctx.eps/4)
        ctx.prec += 10
        # hypsum is has a conservative tolerance. So we try again:
        def term(k, cache={0:ctx.one}):
            if k in cache:
                return cache[k]
            t = term(k-1)
            for a in a_s: t *= (a+(k-1))
            for b in b_s: t /= (b+(k-1))
            t *= z
            t /= k
            cache[k] = t
            return t
        s = ctx.one
        for k in xrange(1, ctx.prec):
            t = term(k)
            s += t
            if abs(t) <= tol:
                return s
    finally:
        ctx.prec = prec
    if p <= q+3:
        contour = kwargs.get('contour')
        if not contour:
            if ctx.arg(z) < 0.25:
                u = z / max(1, abs(z))
                if ctx.arg(z) >= 0:
                    contour = [0, 2j, (2j+2)/u, 2/u, ctx.inf]
                else:
                    contour = [0, -2j, (-2j+2)/u, 2/u, ctx.inf]
                #contour = [0, 2j/z, 2/z, ctx.inf]
                #contour = [0, 2j, 2/z, ctx.inf]
                #contour = [0, 2j, ctx.inf]
            else:
                contour = [0, ctx.inf]
        quad_kwargs = kwargs.get('quad_kwargs', {})
        def g(t):
            return ctx.exp(-t)*ctx.hyper(a_s, b_s+[1], t*z)
        I, err = ctx.quad(g, contour, error=True, **quad_kwargs)
        if err <= abs(I)*ctx.eps*8:
            return I
    raise ctx.NoConvergence


@defun
def _hyp2f2(ctx, a_s, b_s, z, **kwargs):
    (a1, a1type), (a2, a2type) = a_s
    (b1, b1type), (b2, b2type) = b_s

    absz = abs(z)
    magz = ctx.mag(z)
    orig = ctx.prec

    # Asymptotic expansion is ~ exp(z)
    asymp_extraprec = magz

    # Asymptotic series is in terms of 3F1
    can_use_asymptotic = (not kwargs.get('force_series')) and \
        (ctx.mag(absz) > 3)

    # TODO: much of the following could be shared with 2F3 instead of
    # copypasted
    if can_use_asymptotic:
        #print "using asymp"
        try:
            try:
                ctx.prec += asymp_extraprec
                # http://functions.wolfram.com/HypergeometricFunctions/
                # Hypergeometric2F2/06/02/02/0002/
                def h(a1,a2,b1,b2):
                    X = a1+a2-b1-b2
                    A2 = a1+a2
                    B2 = b1+b2
                    c = {}
                    c[0] = ctx.one
                    c[1] = (A2-1)*X+b1*b2-a1*a2
                    s1 = 0
                    k = 0
                    tprev = 0
                    while 1:
                        if k not in c:
                            uu1 = 1-B2+2*a1+a1**2+2*a2+a2**2-A2*B2+a1*a2+b1*b2+(2*B2-3*(A2+1))*k+2*k**2
                            uu2 = (k-A2+b1-1)*(k-A2+b2-1)*(k-X-2)
                            c[k] = ctx.one/k * (uu1*c[k-1]-uu2*c[k-2])
                        t1 = c[k] * z**(-k)
                        if abs(t1) < 0.1*ctx.eps:
                            #print "Convergence :)"
                            break
                        # Quit if the series doesn't converge quickly enough
                        if k > 5 and abs(tprev) / abs(t1) < 1.5:
                            #print "No convergence :("
                            raise ctx.NoConvergence
                        s1 += t1
                        tprev = t1
                        k += 1
                    S = ctx.exp(z)*s1
                    T1 = [z,S], [X,1], [b1,b2],[a1,a2],[],[],0
                    T2 = [-z],[-a1],[b1,b2,a2-a1],[a2,b1-a1,b2-a1],[a1,a1-b1+1,a1-b2+1],[a1-a2+1],-1/z
                    T3 = [-z],[-a2],[b1,b2,a1-a2],[a1,b1-a2,b2-a2],[a2,a2-b1+1,a2-b2+1],[-a1+a2+1],-1/z
                    return T1, T2, T3
                v = ctx.hypercomb(h, [a1,a2,b1,b2], force_series=True, maxterms=4*ctx.prec)
                if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,z]) == 5:
                    v = ctx.re(v)
                return v
            except ctx.NoConvergence:
                pass
        finally:
            ctx.prec = orig

    return ctx.hypsum(2, 2, (a1type, a2type, b1type, b2type), [a1, a2, b1, b2], z, **kwargs)



@defun
def _hyp1f2(ctx, a_s, b_s, z, **kwargs):
    (a1, a1type), = a_s
    (b1, b1type), (b2, b2type) = b_s

    absz = abs(z)
    magz = ctx.mag(z)
    orig = ctx.prec

    # Asymptotic expansion is ~ exp(sqrt(z))
    asymp_extraprec = z and magz//2

    # Asymptotic series is in terms of 3F0
    can_use_asymptotic = (not kwargs.get('force_series')) and \
        (ctx.mag(absz) > 19) and \
        (ctx.sqrt(absz) > 1.5*orig)  # and \
    #   ctx._hyp_check_convergence([a1, a1-b1+1, a1-b2+1], [],
    #                              1/absz, orig+40+asymp_extraprec)

    # TODO: much of the following could be shared with 2F3 instead of
    # copypasted
    if can_use_asymptotic:
        #print "using asymp"
        try:
            try:
                ctx.prec += asymp_extraprec
                # http://functions.wolfram.com/HypergeometricFunctions/
                # Hypergeometric1F2/06/02/03/
                def h(a1,b1,b2):
                    X = ctx.mpq_1_2*(a1-b1-b2+ctx.mpq_1_2)
                    c = {}
                    c[0] = ctx.one
                    c[1] = 2*(ctx.mpq_1_4*(3*a1+b1+b2-2)*(a1-b1-b2)+b1*b2-ctx.mpq_3_16)
                    c[2] = 2*(b1*b2+ctx.mpq_1_4*(a1-b1-b2)*(3*a1+b1+b2-2)-ctx.mpq_3_16)**2+\
                        ctx.mpq_1_16*(-16*(2*a1-3)*b1*b2 + \
                        4*(a1-b1-b2)*(-8*a1**2+11*a1+b1+b2-2)-3)
                    s1 = 0
                    s2 = 0
                    k = 0
                    tprev = 0
                    while 1:
                        if k not in c:
                            uu1 = (3*k**2+(-6*a1+2*b1+2*b2-4)*k + 3*a1**2 - \
                                (b1-b2)**2 - 2*a1*(b1+b2-2) + ctx.mpq_1_4)
                            uu2 = (k-a1+b1-b2-ctx.mpq_1_2)*(k-a1-b1+b2-ctx.mpq_1_2)*\
                                (k-a1+b1+b2-ctx.mpq_5_2)
                            c[k] = ctx.one/(2*k)*(uu1*c[k-1]-uu2*c[k-2])
                        w = c[k] * (-z)**(-0.5*k)
                        t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w
                        t2 = ctx.j**k * ctx.mpf(2)**(-k) * w
                        if abs(t1) < 0.1*ctx.eps:
                            #print "Convergence :)"
                            break
                        # Quit if the series doesn't converge quickly enough
                        if k > 5 and abs(tprev) / abs(t1) < 1.5:
                            #print "No convergence :("
                            raise ctx.NoConvergence
                        s1 += t1
                        s2 += t2
                        tprev = t1
                        k += 1
                    S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \
                        ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2
                    T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2], [a1],\
                        [], [], 0
                    T2 = [-z], [-a1], [b1,b2],[b1-a1,b2-a1], \
                        [a1,a1-b1+1,a1-b2+1], [], 1/z
                    return T1, T2
                v = ctx.hypercomb(h, [a1,b1,b2], force_series=True, maxterms=4*ctx.prec)
                if sum(ctx._is_real_type(u) for u in [a1,b1,b2,z]) == 4:
                    v = ctx.re(v)
                return v
            except ctx.NoConvergence:
                pass
        finally:
            ctx.prec = orig

    #print "not using asymp"
    return ctx.hypsum(1, 2, (a1type, b1type, b2type), [a1, b1, b2], z, **kwargs)



@defun
def _hyp2f3(ctx, a_s, b_s, z, **kwargs):
    (a1, a1type), (a2, a2type) = a_s
    (b1, b1type), (b2, b2type), (b3, b3type) = b_s

    absz = abs(z)
    magz = ctx.mag(z)

    # Asymptotic expansion is ~ exp(sqrt(z))
    asymp_extraprec = z and magz//2
    orig = ctx.prec

    # Asymptotic series is in terms of 4F1
    # The square root below empirically provides a plausible criterion
    # for the leading series to converge
    can_use_asymptotic = (not kwargs.get('force_series')) and \
        (ctx.mag(absz) > 19) and (ctx.sqrt(absz) > 1.5*orig)

    if can_use_asymptotic:
        #print "using asymp"
        try:
            try:
                ctx.prec += asymp_extraprec
                # http://functions.wolfram.com/HypergeometricFunctions/
                # Hypergeometric2F3/06/02/03/01/0002/
                def h(a1,a2,b1,b2,b3):
                    X = ctx.mpq_1_2*(a1+a2-b1-b2-b3+ctx.mpq_1_2)
                    A2 = a1+a2
                    B3 = b1+b2+b3
                    A = a1*a2
                    B = b1*b2+b3*b2+b1*b3
                    R = b1*b2*b3
                    c = {}
                    c[0] = ctx.one
                    c[1] = 2*(B - A + ctx.mpq_1_4*(3*A2+B3-2)*(A2-B3) - ctx.mpq_3_16)
                    c[2] = ctx.mpq_1_2*c[1]**2 + ctx.mpq_1_16*(-16*(2*A2-3)*(B-A) + 32*R +\
                        4*(-8*A2**2 + 11*A2 + 8*A + B3 - 2)*(A2-B3)-3)
                    s1 = 0
                    s2 = 0
                    k = 0
                    tprev = 0
                    while 1:
                        if k not in c:
                            uu1 = (k-2*X-3)*(k-2*X-2*b1-1)*(k-2*X-2*b2-1)*\
                                (k-2*X-2*b3-1)
                            uu2 = (4*(k-1)**3 - 6*(4*X+B3)*(k-1)**2 + \
                                2*(24*X**2+12*B3*X+4*B+B3-1)*(k-1) - 32*X**3 - \
                                24*B3*X**2 - 4*B - 8*R - 4*(4*B+B3-1)*X + 2*B3-1)
                            uu3 = (5*(k-1)**2+2*(-10*X+A2-3*B3+3)*(k-1)+2*c[1])
                            c[k] = ctx.one/(2*k)*(uu1*c[k-3]-uu2*c[k-2]+uu3*c[k-1])
                        w = c[k] * ctx.power(-z, -0.5*k)
                        t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w
                        t2 = ctx.j**k * ctx.mpf(2)**(-k) * w
                        if abs(t1) < 0.1*ctx.eps:
                            break
                        # Quit if the series doesn't converge quickly enough
                        if k > 5 and abs(tprev) / abs(t1) < 1.5:
                            raise ctx.NoConvergence
                        s1 += t1
                        s2 += t2
                        tprev = t1
                        k += 1
                    S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \
                        ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2
                    T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2, b3], [a1, a2],\
                        [], [], 0
                    T2 = [-z], [-a1], [b1,b2,b3,a2-a1],[a2,b1-a1,b2-a1,b3-a1], \
                        [a1,a1-b1+1,a1-b2+1,a1-b3+1], [a1-a2+1], 1/z
                    T3 = [-z], [-a2], [b1,b2,b3,a1-a2],[a1,b1-a2,b2-a2,b3-a2], \
                        [a2,a2-b1+1,a2-b2+1,a2-b3+1],[-a1+a2+1], 1/z
                    return T1, T2, T3
                v = ctx.hypercomb(h, [a1,a2,b1,b2,b3], force_series=True, maxterms=4*ctx.prec)
                if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,b3,z]) == 6:
                    v = ctx.re(v)
                return v
            except ctx.NoConvergence:
                pass
        finally:
            ctx.prec = orig

    return ctx.hypsum(2, 3, (a1type, a2type, b1type, b2type, b3type), [a1, a2, b1, b2, b3], z, **kwargs)

@defun
def _hyp2f0(ctx, a_s, b_s, z, **kwargs):
    (a, atype), (b, btype) = a_s
    # We want to try aggressively to use the asymptotic expansion,
    # and fall back only when absolutely necessary
    try:
        kwargsb = kwargs.copy()
        kwargsb['maxterms'] = kwargsb.get('maxterms', ctx.prec)
        return ctx.hypsum(2, 0, (atype,btype), [a,b], z, **kwargsb)
    except ctx.NoConvergence:
        if kwargs.get('force_series'):
            raise
        pass
    def h(a, b):
        w = ctx.sinpi(b)
        rz = -1/z
        T1 = ([ctx.pi,w,rz],[1,-1,a],[],[a-b+1,b],[a],[b],rz)
        T2 = ([-ctx.pi,w,rz],[1,-1,1+a-b],[],[a,2-b],[a-b+1],[2-b],rz)
        return T1, T2
    return ctx.hypercomb(h, [a, 1+a-b], **kwargs)

@defun
def meijerg(ctx, a_s, b_s, z, r=1, series=None, **kwargs):
    an, ap = a_s
    bm, bq = b_s
    n = len(an)
    p = n + len(ap)
    m = len(bm)
    q = m + len(bq)
    a = an+ap
    b = bm+bq
    a = [ctx.convert(_) for _ in a]
    b = [ctx.convert(_) for _ in b]
    z = ctx.convert(z)
    if series is None:
        if p < q: series = 1
        if p > q: series = 2
        if p == q:
            if m+n == p and abs(z) > 1:
                series = 2
            else:
                series = 1
    if kwargs.get('verbose'):
        print("Meijer G m,n,p,q,series =", m,n,p,q,series)
    if series == 1:
        def h(*args):
            a = args[:p]
            b = args[p:]
            terms = []
            for k in range(m):
                bases = [z]
                expts = [b[k]/r]
                gn = [b[j]-b[k] for j in range(m) if j != k]
                gn += [1-a[j]+b[k] for j in range(n)]
                gd = [a[j]-b[k] for j in range(n,p)]
                gd += [1-b[j]+b[k] for j in range(m,q)]
                hn = [1-a[j]+b[k] for j in range(p)]
                hd = [1-b[j]+b[k] for j in range(q) if j != k]
                hz = (-ctx.one)**(p-m-n) * z**(ctx.one/r)
                terms.append((bases, expts, gn, gd, hn, hd, hz))
            return terms
    else:
        def h(*args):
            a = args[:p]
            b = args[p:]
            terms = []
            for k in range(n):
                bases = [z]
                if r == 1:
                    expts = [a[k]-1]
                else:
                    expts = [(a[k]-1)/ctx.convert(r)]
                gn = [a[k]-a[j] for j in range(n) if j != k]
                gn += [1-a[k]+b[j] for j in range(m)]
                gd = [a[k]-b[j] for j in range(m,q)]
                gd += [1-a[k]+a[j] for j in range(n,p)]
                hn = [1-a[k]+b[j] for j in range(q)]
                hd = [1+a[j]-a[k] for j in range(p) if j != k]
                hz = (-ctx.one)**(q-m-n) / z**(ctx.one/r)
                terms.append((bases, expts, gn, gd, hn, hd, hz))
            return terms
    return ctx.hypercomb(h, a+b, **kwargs)

@defun_wrapped
def appellf1(ctx,a,b1,b2,c,x,y,**kwargs):
    # Assume x smaller
    # We will use x for the outer loop
    if abs(x) > abs(y):
        x, y = y, x
        b1, b2 = b2, b1
    def ok(x):
        return abs(x) < 0.99
    # Finite cases
    if ctx.isnpint(a):
        pass
    elif ctx.isnpint(b1):
        pass
    elif ctx.isnpint(b2):
        x, y, b1, b2 = y, x, b2, b1
    else:
        #print x, y
        # Note: ok if |y| > 1, because
        # 2F1 implements analytic continuation
        if not ok(x):
            u1 = (x-y)/(x-1)
            if not ok(u1):
                raise ValueError("Analytic continuation not implemented")
            #print "Using analytic continuation"
            return (1-x)**(-b1)*(1-y)**(c-a-b2)*\
                ctx.appellf1(c-a,b1,c-b1-b2,c,u1,y,**kwargs)
    return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]}, {'m+n':[c]}, x,y, **kwargs)

@defun
def appellf2(ctx,a,b1,b2,c1,c2,x,y,**kwargs):
    # TODO: continuation
    return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]},
        {'m':[c1],'n':[c2]}, x,y, **kwargs)

@defun
def appellf3(ctx,a1,a2,b1,b2,c,x,y,**kwargs):
    outer_polynomial = ctx.isnpint(a1) or ctx.isnpint(b1)
    inner_polynomial = ctx.isnpint(a2) or ctx.isnpint(b2)
    if not outer_polynomial:
        if inner_polynomial or abs(x) > abs(y):
            x, y = y, x
            a1,a2,b1,b2 = a2,a1,b2,b1
    return ctx.hyper2d({'m':[a1,b1],'n':[a2,b2]}, {'m+n':[c]},x,y,**kwargs)

@defun
def appellf4(ctx,a,b,c1,c2,x,y,**kwargs):
    # TODO: continuation
    return ctx.hyper2d({'m+n':[a,b]}, {'m':[c1],'n':[c2]},x,y,**kwargs)

@defun
def hyper2d(ctx, a, b, x, y, **kwargs):
    r"""
    Sums the generalized 2D hypergeometric series

    .. math ::

        \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
            \frac{P((a),m,n)}{Q((b),m,n)}
            \frac{x^m y^n} {m! n!}

    where `(a) = (a_1,\ldots,a_r)`, `(b) = (b_1,\ldots,b_s)` and where
    `P` and `Q` are products of rising factorials such as `(a_j)_n` or
    `(a_j)_{m+n}`. `P` and `Q` are specified in the form of dicts, with
    the `m` and `n` dependence as keys and parameter lists as values.
    The supported rising factorials are given in the following table
    (note that only a few are supported in `Q`):

    +------------+-------------------+--------+
    | Key        |  Rising factorial | `Q`    |
    +============+===================+========+
    | ``'m'``    |   `(a_j)_m`       | Yes    |
    +------------+-------------------+--------+
    | ``'n'``    |   `(a_j)_n`       | Yes    |
    +------------+-------------------+--------+
    | ``'m+n'``  |   `(a_j)_{m+n}`   | Yes    |
    +------------+-------------------+--------+
    | ``'m-n'``  |   `(a_j)_{m-n}`   | No     |
    +------------+-------------------+--------+
    | ``'n-m'``  |   `(a_j)_{n-m}`   | No     |
    +------------+-------------------+--------+
    | ``'2m+n'`` |   `(a_j)_{2m+n}`  | No     |
    +------------+-------------------+--------+
    | ``'2m-n'`` |   `(a_j)_{2m-n}`  | No     |
    +------------+-------------------+--------+
    | ``'2n-m'`` |   `(a_j)_{2n-m}`  | No     |
    +------------+-------------------+--------+

    For example, the Appell F1 and F4 functions

    .. math ::

        F_1 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
              \frac{(a)_{m+n} (b)_m (c)_n}{(d)_{m+n}}
              \frac{x^m y^n}{m! n!}

        F_4 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
              \frac{(a)_{m+n} (b)_{m+n}}{(c)_m (d)_{n}}
              \frac{x^m y^n}{m! n!}

    can be represented respectively as

        ``hyper2d({'m+n':[a], 'm':[b], 'n':[c]}, {'m+n':[d]}, x, y)``

        ``hyper2d({'m+n':[a,b]}, {'m':[c], 'n':[d]}, x, y)``

    More generally, :func:`~mpmath.hyper2d` can evaluate any of the 34 distinct
    convergent second-order (generalized Gaussian) hypergeometric
    series enumerated by Horn, as well as the Kampe de Feriet
    function.

    The series is computed by rewriting it so that the inner
    series (i.e. the series containing `n` and `y`) has the form of an
    ordinary generalized hypergeometric series and thereby can be
    evaluated efficiently using :func:`~mpmath.hyper`. If possible,
    manually swapping `x` and `y` and the corresponding parameters
    can sometimes give better results.

    **Examples**

    Two separable cases: a product of two geometric series, and a
    product of two Gaussian hypergeometric functions::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> x, y = mpf(0.25), mpf(0.5)
        >>> hyper2d({'m':1,'n':1}, {}, x,y)
        2.666666666666666666666667
        >>> 1/(1-x)/(1-y)
        2.666666666666666666666667
        >>> hyper2d({'m':[1,2],'n':[3,4]}, {'m':[5],'n':[6]}, x,y)
        4.164358531238938319669856
        >>> hyp2f1(1,2,5,x)*hyp2f1(3,4,6,y)
        4.164358531238938319669856

    Some more series that can be done in closed form::

        >>> hyper2d({'m':1,'n':1},{'m+n':1},x,y)
        2.013417124712514809623881
        >>> (exp(x)*x-exp(y)*y)/(x-y)
        2.013417124712514809623881

    Six of the 34 Horn functions, G1-G3 and H1-H3::

        >>> from mpmath import *
        >>> mp.dps = 10; mp.pretty = True
        >>> x, y = 0.0625, 0.125
        >>> a1,a2,b1,b2,c1,c2,d = 1.1,-1.2,-1.3,-1.4,1.5,-1.6,1.7
        >>> hyper2d({'m+n':a1,'n-m':b1,'m-n':b2},{},x,y)  # G1
        1.139090746
        >>> nsum(lambda m,n: rf(a1,m+n)*rf(b1,n-m)*rf(b2,m-n)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        1.139090746
        >>> hyper2d({'m':a1,'n':a2,'n-m':b1,'m-n':b2},{},x,y)  # G2
        0.9503682696
        >>> nsum(lambda m,n: rf(a1,m)*rf(a2,n)*rf(b1,n-m)*rf(b2,m-n)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        0.9503682696
        >>> hyper2d({'2n-m':a1,'2m-n':a2},{},x,y)  # G3
        1.029372029
        >>> nsum(lambda m,n: rf(a1,2*n-m)*rf(a2,2*m-n)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        1.029372029
        >>> hyper2d({'m-n':a1,'m+n':b1,'n':c1},{'m':d},x,y)  # H1
        -1.605331256
        >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m+n)*rf(c1,n)/rf(d,m)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        -1.605331256
        >>> hyper2d({'m-n':a1,'m':b1,'n':[c1,c2]},{'m':d},x,y)  # H2
        -2.35405404
        >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m)*rf(c1,n)*rf(c2,n)/rf(d,m)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        -2.35405404
        >>> hyper2d({'2m+n':a1,'n':b1},{'m+n':c1},x,y)  # H3
        0.974479074
        >>> nsum(lambda m,n: rf(a1,2*m+n)*rf(b1,n)/rf(c1,m+n)*\
        ...     x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
        0.974479074

    **References**

    1. [SrivastavaKarlsson]_
    2. [Weisstein]_ http://mathworld.wolfram.com/HornFunction.html
    3. [Weisstein]_ http://mathworld.wolfram.com/AppellHypergeometricFunction.html

    """
    x = ctx.convert(x)
    y = ctx.convert(y)
    def parse(dct, key):
        args = dct.pop(key, [])
        try:
            args = list(args)
        except TypeError:
            args = [args]
        return [ctx.convert(arg) for arg in args]
    a_s = dict(a)
    b_s = dict(b)
    a_m = parse(a, 'm')
    a_n = parse(a, 'n')
    a_m_add_n = parse(a, 'm+n')
    a_m_sub_n = parse(a, 'm-n')
    a_n_sub_m = parse(a, 'n-m')
    a_2m_add_n = parse(a, '2m+n')
    a_2m_sub_n = parse(a, '2m-n')
    a_2n_sub_m = parse(a, '2n-m')
    b_m = parse(b, 'm')
    b_n = parse(b, 'n')
    b_m_add_n = parse(b, 'm+n')
    if a: raise ValueError("unsupported key: %r" % a.keys()[0])
    if b: raise ValueError("unsupported key: %r" % b.keys()[0])
    s = 0
    outer = ctx.one
    m = ctx.mpf(0)
    ok_count = 0
    prec = ctx.prec
    maxterms = kwargs.get('maxterms', 20*prec)
    try:
        ctx.prec += 10
        tol = +ctx.eps
        while 1:
            inner_sign = 1
            outer_sign = 1
            inner_a = list(a_n)
            inner_b = list(b_n)
            outer_a = [a+m for a in a_m]
            outer_b = [b+m for b in b_m]
            # (a)_{m+n} = (a)_m (a+m)_n
            for a in a_m_add_n:
                a = a+m
                inner_a.append(a)
                outer_a.append(a)
            # (b)_{m+n} = (b)_m (b+m)_n
            for b in b_m_add_n:
                b = b+m
                inner_b.append(b)
                outer_b.append(b)
            # (a)_{n-m} = (a-m)_n / (a-m)_m
            for a in a_n_sub_m:
                inner_a.append(a-m)
                outer_b.append(a-m-1)
            # (a)_{m-n} = (-1)^(m+n) (1-a-m)_m / (1-a-m)_n
            for a in a_m_sub_n:
                inner_sign *= (-1)
                outer_sign *= (-1)**(m)
                inner_b.append(1-a-m)
                outer_a.append(-a-m)
            # (a)_{2m+n} = (a)_{2m} (a+2m)_n
            for a in a_2m_add_n:
                inner_a.append(a+2*m)
                outer_a.append((a+2*m)*(1+a+2*m))
            # (a)_{2m-n} = (-1)^(2m+n) (1-a-2m)_{2m} / (1-a-2m)_n
            for a in a_2m_sub_n:
                inner_sign *= (-1)
                inner_b.append(1-a-2*m)
                outer_a.append((a+2*m)*(1+a+2*m))
            # (a)_{2n-m} = 4^n ((a-m)/2)_n ((a-m+1)/2)_n / (a-m)_m
            for a in a_2n_sub_m:
                inner_sign *= 4
                inner_a.append(0.5*(a-m))
                inner_a.append(0.5*(a-m+1))
                outer_b.append(a-m-1)
            inner = ctx.hyper(inner_a, inner_b, inner_sign*y,
                zeroprec=ctx.prec, **kwargs)
            term = outer * inner * outer_sign
            if abs(term) < tol:
                ok_count += 1
            else:
                ok_count = 0
            if ok_count >= 3 or not outer:
                break
            s += term
            for a in outer_a: outer *= a
            for b in outer_b: outer /= b
            m += 1
            outer = outer * x / m
            if m > maxterms:
                raise ctx.NoConvergence("maxterms exceeded in hyper2d")
    finally:
        ctx.prec = prec
    return +s

"""
@defun
def kampe_de_feriet(ctx,a,b,c,d,e,f,x,y,**kwargs):
    return ctx.hyper2d({'m+n':a,'m':b,'n':c},
        {'m+n':d,'m':e,'n':f}, x,y, **kwargs)
"""

@defun
def bihyper(ctx, a_s, b_s, z, **kwargs):
    r"""
    Evaluates the bilateral hypergeometric series

    .. math ::

        \,_AH_B(a_1, \ldots, a_k; b_1, \ldots, b_B; z) =
            \sum_{n=-\infty}^{\infty}
            \frac{(a_1)_n \ldots (a_A)_n}
                 {(b_1)_n \ldots (b_B)_n} \, z^n

    where, for direct convergence, `A = B` and `|z| = 1`, although a
    regularized sum exists more generally by considering the
    bilateral series as a sum of two ordinary hypergeometric
    functions. In order for the series to make sense, none of the
    parameters may be integers.

    **Examples**

    The value of `\,_2H_2` at `z = 1` is given by Dougall's formula::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> a,b,c,d = 0.5, 1.5, 2.25, 3.25
        >>> bihyper([a,b],[c,d],1)
        -14.49118026212345786148847
        >>> gammaprod([c,d,1-a,1-b,c+d-a-b-1],[c-a,d-a,c-b,d-b])
        -14.49118026212345786148847

    The regularized function `\,_1H_0` can be expressed as the
    sum of one `\,_2F_0` function and one `\,_1F_1` function::

        >>> a = mpf(0.25)
        >>> z = mpf(0.75)
        >>> bihyper([a], [], z)
        (0.2454393389657273841385582 + 0.2454393389657273841385582j)
        >>> hyper([a,1],[],z) + (hyper([1],[1-a],-1/z)-1)
        (0.2454393389657273841385582 + 0.2454393389657273841385582j)
        >>> hyper([a,1],[],z) + hyper([1],[2-a],-1/z)/z/(a-1)
        (0.2454393389657273841385582 + 0.2454393389657273841385582j)

    **References**

    1. [Slater]_ (chapter 6: "Bilateral Series", pp. 180-189)
    2. [Wikipedia]_ http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series

    """
    z = ctx.convert(z)
    c_s = a_s + b_s
    p = len(a_s)
    q = len(b_s)
    if (p, q) == (0,0) or (p, q) == (1,1):
        return ctx.zero * z
    neg = (p-q) % 2
    def h(*c_s):
        a_s = list(c_s[:p])
        b_s = list(c_s[p:])
        aa_s = [2-b for b in b_s]
        bb_s = [2-a for a in a_s]
        rp = [(-1)**neg * z] + [1-b for b in b_s] + [1-a for a in a_s]
        rc = [-1] + [1]*len(b_s) + [-1]*len(a_s)
        T1 = [], [], [], [], a_s + [1], b_s, z
        T2 = rp, rc, [], [], aa_s + [1], bb_s, (-1)**neg / z
        return T1, T2
    return ctx.hypercomb(h, c_s, **kwargs)