Spaces:
Running
Running
File size: 51,570 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 |
from ..libmp.backend import xrange
from .functions import defun, defun_wrapped
def _check_need_perturb(ctx, terms, prec, discard_known_zeros):
perturb = recompute = False
extraprec = 0
discard = []
for term_index, term in enumerate(terms):
w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term
have_singular_nongamma_weight = False
# Avoid division by zero in leading factors (TODO:
# also check for near division by zero?)
for k, w in enumerate(w_s):
if not w:
if ctx.re(c_s[k]) <= 0 and c_s[k]:
perturb = recompute = True
have_singular_nongamma_weight = True
pole_count = [0, 0, 0]
# Check for gamma and series poles and near-poles
for data_index, data in enumerate([alpha_s, beta_s, b_s]):
for i, x in enumerate(data):
n, d = ctx.nint_distance(x)
# Poles
if n > 0:
continue
if d == ctx.ninf:
# OK if we have a polynomial
# ------------------------------
ok = False
if data_index == 2:
for u in a_s:
if ctx.isnpint(u) and u >= int(n):
ok = True
break
if ok:
continue
pole_count[data_index] += 1
# ------------------------------
#perturb = recompute = True
#return perturb, recompute, extraprec
elif d < -4:
extraprec += -d
recompute = True
if discard_known_zeros and pole_count[1] > pole_count[0] + pole_count[2] \
and not have_singular_nongamma_weight:
discard.append(term_index)
elif sum(pole_count):
perturb = recompute = True
return perturb, recompute, extraprec, discard
_hypercomb_msg = """
hypercomb() failed to converge to the requested %i bits of accuracy
using a working precision of %i bits. The function value may be zero or
infinite; try passing zeroprec=N or infprec=M to bound finite values between
2^(-N) and 2^M. Otherwise try a higher maxprec or maxterms.
"""
@defun
def hypercomb(ctx, function, params=[], discard_known_zeros=True, **kwargs):
orig = ctx.prec
sumvalue = ctx.zero
dist = ctx.nint_distance
ninf = ctx.ninf
orig_params = params[:]
verbose = kwargs.get('verbose', False)
maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(orig))
kwargs['maxprec'] = maxprec # For calls to hypsum
zeroprec = kwargs.get('zeroprec')
infprec = kwargs.get('infprec')
perturbed_reference_value = None
hextra = 0
try:
while 1:
ctx.prec += 10
if ctx.prec > maxprec:
raise ValueError(_hypercomb_msg % (orig, ctx.prec))
orig2 = ctx.prec
params = orig_params[:]
terms = function(*params)
if verbose:
print()
print("ENTERING hypercomb main loop")
print("prec =", ctx.prec)
print("hextra", hextra)
perturb, recompute, extraprec, discard = \
_check_need_perturb(ctx, terms, orig, discard_known_zeros)
ctx.prec += extraprec
if perturb:
if "hmag" in kwargs:
hmag = kwargs["hmag"]
elif ctx._fixed_precision:
hmag = int(ctx.prec*0.3)
else:
hmag = orig + 10 + hextra
h = ctx.ldexp(ctx.one, -hmag)
ctx.prec = orig2 + 10 + hmag + 10
for k in range(len(params)):
params[k] += h
# Heuristically ensure that the perturbations
# are "independent" so that two perturbations
# don't accidentally cancel each other out
# in a subtraction.
h += h/(k+1)
if recompute:
terms = function(*params)
if discard_known_zeros:
terms = [term for (i, term) in enumerate(terms) if i not in discard]
if not terms:
return ctx.zero
evaluated_terms = []
for term_index, term_data in enumerate(terms):
w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term_data
if verbose:
print()
print(" Evaluating term %i/%i : %iF%i" % \
(term_index+1, len(terms), len(a_s), len(b_s)))
print(" powers", ctx.nstr(w_s), ctx.nstr(c_s))
print(" gamma", ctx.nstr(alpha_s), ctx.nstr(beta_s))
print(" hyper", ctx.nstr(a_s), ctx.nstr(b_s))
print(" z", ctx.nstr(z))
#v = ctx.hyper(a_s, b_s, z, **kwargs)
#for a in alpha_s: v *= ctx.gamma(a)
#for b in beta_s: v *= ctx.rgamma(b)
#for w, c in zip(w_s, c_s): v *= ctx.power(w, c)
v = ctx.fprod([ctx.hyper(a_s, b_s, z, **kwargs)] + \
[ctx.gamma(a) for a in alpha_s] + \
[ctx.rgamma(b) for b in beta_s] + \
[ctx.power(w,c) for (w,c) in zip(w_s,c_s)])
if verbose:
print(" Value:", v)
evaluated_terms.append(v)
if len(terms) == 1 and (not perturb):
sumvalue = evaluated_terms[0]
break
if ctx._fixed_precision:
sumvalue = ctx.fsum(evaluated_terms)
break
sumvalue = ctx.fsum(evaluated_terms)
term_magnitudes = [ctx.mag(x) for x in evaluated_terms]
max_magnitude = max(term_magnitudes)
sum_magnitude = ctx.mag(sumvalue)
cancellation = max_magnitude - sum_magnitude
if verbose:
print()
print(" Cancellation:", cancellation, "bits")
print(" Increased precision:", ctx.prec - orig, "bits")
precision_ok = cancellation < ctx.prec - orig
if zeroprec is None:
zero_ok = False
else:
zero_ok = max_magnitude - ctx.prec < -zeroprec
if infprec is None:
inf_ok = False
else:
inf_ok = max_magnitude > infprec
if precision_ok and (not perturb) or ctx.isnan(cancellation):
break
elif precision_ok:
if perturbed_reference_value is None:
hextra += 20
perturbed_reference_value = sumvalue
continue
elif ctx.mag(sumvalue - perturbed_reference_value) <= \
ctx.mag(sumvalue) - orig:
break
elif zero_ok:
sumvalue = ctx.zero
break
elif inf_ok:
sumvalue = ctx.inf
break
elif 'hmag' in kwargs:
break
else:
hextra *= 2
perturbed_reference_value = sumvalue
# Increase precision
else:
increment = min(max(cancellation, orig//2), max(extraprec,orig))
ctx.prec += increment
if verbose:
print(" Must start over with increased precision")
continue
finally:
ctx.prec = orig
return +sumvalue
@defun
def hyper(ctx, a_s, b_s, z, **kwargs):
"""
Hypergeometric function, general case.
"""
z = ctx.convert(z)
p = len(a_s)
q = len(b_s)
a_s = [ctx._convert_param(a) for a in a_s]
b_s = [ctx._convert_param(b) for b in b_s]
# Reduce degree by eliminating common parameters
if kwargs.get('eliminate', True):
elim_nonpositive = kwargs.get('eliminate_all', False)
i = 0
while i < q and a_s:
b = b_s[i]
if b in a_s and (elim_nonpositive or not ctx.isnpint(b[0])):
a_s.remove(b)
b_s.remove(b)
p -= 1
q -= 1
else:
i += 1
# Handle special cases
if p == 0:
if q == 1: return ctx._hyp0f1(b_s, z, **kwargs)
elif q == 0: return ctx.exp(z)
elif p == 1:
if q == 1: return ctx._hyp1f1(a_s, b_s, z, **kwargs)
elif q == 2: return ctx._hyp1f2(a_s, b_s, z, **kwargs)
elif q == 0: return ctx._hyp1f0(a_s[0][0], z)
elif p == 2:
if q == 1: return ctx._hyp2f1(a_s, b_s, z, **kwargs)
elif q == 2: return ctx._hyp2f2(a_s, b_s, z, **kwargs)
elif q == 3: return ctx._hyp2f3(a_s, b_s, z, **kwargs)
elif q == 0: return ctx._hyp2f0(a_s, b_s, z, **kwargs)
elif p == q+1:
return ctx._hypq1fq(p, q, a_s, b_s, z, **kwargs)
elif p > q+1 and not kwargs.get('force_series'):
return ctx._hyp_borel(p, q, a_s, b_s, z, **kwargs)
coeffs, types = zip(*(a_s+b_s))
return ctx.hypsum(p, q, types, coeffs, z, **kwargs)
@defun
def hyp0f1(ctx,b,z,**kwargs):
return ctx.hyper([],[b],z,**kwargs)
@defun
def hyp1f1(ctx,a,b,z,**kwargs):
return ctx.hyper([a],[b],z,**kwargs)
@defun
def hyp1f2(ctx,a1,b1,b2,z,**kwargs):
return ctx.hyper([a1],[b1,b2],z,**kwargs)
@defun
def hyp2f1(ctx,a,b,c,z,**kwargs):
return ctx.hyper([a,b],[c],z,**kwargs)
@defun
def hyp2f2(ctx,a1,a2,b1,b2,z,**kwargs):
return ctx.hyper([a1,a2],[b1,b2],z,**kwargs)
@defun
def hyp2f3(ctx,a1,a2,b1,b2,b3,z,**kwargs):
return ctx.hyper([a1,a2],[b1,b2,b3],z,**kwargs)
@defun
def hyp2f0(ctx,a,b,z,**kwargs):
return ctx.hyper([a,b],[],z,**kwargs)
@defun
def hyp3f2(ctx,a1,a2,a3,b1,b2,z,**kwargs):
return ctx.hyper([a1,a2,a3],[b1,b2],z,**kwargs)
@defun_wrapped
def _hyp1f0(ctx, a, z):
return (1-z) ** (-a)
@defun
def _hyp0f1(ctx, b_s, z, **kwargs):
(b, btype), = b_s
if z:
magz = ctx.mag(z)
else:
magz = 0
if magz >= 8 and not kwargs.get('force_series'):
try:
# http://functions.wolfram.com/HypergeometricFunctions/
# Hypergeometric0F1/06/02/03/0004/
# TODO: handle the all-real case more efficiently!
# TODO: figure out how much precision is needed (exponential growth)
orig = ctx.prec
try:
ctx.prec += 12 + magz//2
def h():
w = ctx.sqrt(-z)
jw = ctx.j*w
u = 1/(4*jw)
c = ctx.mpq_1_2 - b
E = ctx.exp(2*jw)
T1 = ([-jw,E], [c,-1], [], [], [b-ctx.mpq_1_2, ctx.mpq_3_2-b], [], -u)
T2 = ([jw,E], [c,1], [], [], [b-ctx.mpq_1_2, ctx.mpq_3_2-b], [], u)
return T1, T2
v = ctx.hypercomb(h, [], force_series=True)
v = ctx.gamma(b)/(2*ctx.sqrt(ctx.pi))*v
finally:
ctx.prec = orig
if ctx._is_real_type(b) and ctx._is_real_type(z):
v = ctx._re(v)
return +v
except ctx.NoConvergence:
pass
return ctx.hypsum(0, 1, (btype,), [b], z, **kwargs)
@defun
def _hyp1f1(ctx, a_s, b_s, z, **kwargs):
(a, atype), = a_s
(b, btype), = b_s
if not z:
return ctx.one+z
magz = ctx.mag(z)
if magz >= 7 and not (ctx.isint(a) and ctx.re(a) <= 0):
if ctx.isinf(z):
if ctx.sign(a) == ctx.sign(b) == ctx.sign(z) == 1:
return ctx.inf
return ctx.nan * z
try:
try:
ctx.prec += magz
sector = ctx._im(z) < 0
def h(a,b):
if sector:
E = ctx.expjpi(ctx.fneg(a, exact=True))
else:
E = ctx.expjpi(a)
rz = 1/z
T1 = ([E,z], [1,-a], [b], [b-a], [a, 1+a-b], [], -rz)
T2 = ([ctx.exp(z),z], [1,a-b], [b], [a], [b-a, 1-a], [], rz)
return T1, T2
v = ctx.hypercomb(h, [a,b], force_series=True)
if ctx._is_real_type(a) and ctx._is_real_type(b) and ctx._is_real_type(z):
v = ctx._re(v)
return +v
except ctx.NoConvergence:
pass
finally:
ctx.prec -= magz
v = ctx.hypsum(1, 1, (atype, btype), [a, b], z, **kwargs)
return v
def _hyp2f1_gosper(ctx,a,b,c,z,**kwargs):
# Use Gosper's recurrence
# See http://www.math.utexas.edu/pipermail/maxima/2006/000126.html
_a,_b,_c,_z = a, b, c, z
orig = ctx.prec
maxprec = kwargs.get('maxprec', 100*orig)
extra = 10
while 1:
ctx.prec = orig + extra
#a = ctx.convert(_a)
#b = ctx.convert(_b)
#c = ctx.convert(_c)
z = ctx.convert(_z)
d = ctx.mpf(0)
e = ctx.mpf(1)
f = ctx.mpf(0)
k = 0
# Common subexpression elimination, unfortunately making
# things a bit unreadable. The formula is quite messy to begin
# with, though...
abz = a*b*z
ch = c * ctx.mpq_1_2
c1h = (c+1) * ctx.mpq_1_2
nz = 1-z
g = z/nz
abg = a*b*g
cba = c-b-a
z2 = z-2
tol = -ctx.prec - 10
nstr = ctx.nstr
nprint = ctx.nprint
mag = ctx.mag
maxmag = ctx.ninf
while 1:
kch = k+ch
kakbz = (k+a)*(k+b)*z / (4*(k+1)*kch*(k+c1h))
d1 = kakbz*(e-(k+cba)*d*g)
e1 = kakbz*(d*abg+(k+c)*e)
ft = d*(k*(cba*z+k*z2-c)-abz)/(2*kch*nz)
f1 = f + e - ft
maxmag = max(maxmag, mag(f1))
if mag(f1-f) < tol:
break
d, e, f = d1, e1, f1
k += 1
cancellation = maxmag - mag(f1)
if cancellation < extra:
break
else:
extra += cancellation
if extra > maxprec:
raise ctx.NoConvergence
return f1
@defun
def _hyp2f1(ctx, a_s, b_s, z, **kwargs):
(a, atype), (b, btype) = a_s
(c, ctype), = b_s
if z == 1:
# TODO: the following logic can be simplified
convergent = ctx.re(c-a-b) > 0
finite = (ctx.isint(a) and a <= 0) or (ctx.isint(b) and b <= 0)
zerodiv = ctx.isint(c) and c <= 0 and not \
((ctx.isint(a) and c <= a <= 0) or (ctx.isint(b) and c <= b <= 0))
#print "bz", a, b, c, z, convergent, finite, zerodiv
# Gauss's theorem gives the value if convergent
if (convergent or finite) and not zerodiv:
return ctx.gammaprod([c, c-a-b], [c-a, c-b], _infsign=True)
# Otherwise, there is a pole and we take the
# sign to be that when approaching from below
# XXX: this evaluation is not necessarily correct in all cases
return ctx.hyp2f1(a,b,c,1-ctx.eps*2) * ctx.inf
# Equal to 1 (first term), unless there is a subsequent
# division by zero
if not z:
# Division by zero but power of z is higher than
# first order so cancels
if c or a == 0 or b == 0:
return 1+z
# Indeterminate
return ctx.nan
# Hit zero denominator unless numerator goes to 0 first
if ctx.isint(c) and c <= 0:
if (ctx.isint(a) and c <= a <= 0) or \
(ctx.isint(b) and c <= b <= 0):
pass
else:
# Pole in series
return ctx.inf
absz = abs(z)
# Fast case: standard series converges rapidly,
# possibly in finitely many terms
if absz <= 0.8 or (ctx.isint(a) and a <= 0 and a >= -1000) or \
(ctx.isint(b) and b <= 0 and b >= -1000):
return ctx.hypsum(2, 1, (atype, btype, ctype), [a, b, c], z, **kwargs)
orig = ctx.prec
try:
ctx.prec += 10
# Use 1/z transformation
if absz >= 1.3:
def h(a,b):
t = ctx.mpq_1-c; ab = a-b; rz = 1/z
T1 = ([-z],[-a], [c,-ab],[b,c-a], [a,t+a],[ctx.mpq_1+ab], rz)
T2 = ([-z],[-b], [c,ab],[a,c-b], [b,t+b],[ctx.mpq_1-ab], rz)
return T1, T2
v = ctx.hypercomb(h, [a,b], **kwargs)
# Use 1-z transformation
elif abs(1-z) <= 0.75:
def h(a,b):
t = c-a-b; ca = c-a; cb = c-b; rz = 1-z
T1 = [], [], [c,t], [ca,cb], [a,b], [1-t], rz
T2 = [rz], [t], [c,a+b-c], [a,b], [ca,cb], [1+t], rz
return T1, T2
v = ctx.hypercomb(h, [a,b], **kwargs)
# Use z/(z-1) transformation
elif abs(z/(z-1)) <= 0.75:
v = ctx.hyp2f1(a, c-b, c, z/(z-1)) / (1-z)**a
# Remaining part of unit circle
else:
v = _hyp2f1_gosper(ctx,a,b,c,z,**kwargs)
finally:
ctx.prec = orig
return +v
@defun
def _hypq1fq(ctx, p, q, a_s, b_s, z, **kwargs):
r"""
Evaluates 3F2, 4F3, 5F4, ...
"""
a_s, a_types = zip(*a_s)
b_s, b_types = zip(*b_s)
a_s = list(a_s)
b_s = list(b_s)
absz = abs(z)
ispoly = False
for a in a_s:
if ctx.isint(a) and a <= 0:
ispoly = True
break
# Direct summation
if absz < 1 or ispoly:
try:
return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs)
except ctx.NoConvergence:
if absz > 1.1 or ispoly:
raise
# Use expansion at |z-1| -> 0.
# Reference: Wolfgang Buhring, "Generalized Hypergeometric Functions at
# Unit Argument", Proc. Amer. Math. Soc., Vol. 114, No. 1 (Jan. 1992),
# pp.145-153
# The current implementation has several problems:
# 1. We only implement it for 3F2. The expansion coefficients are
# given by extremely messy nested sums in the higher degree cases
# (see reference). Is efficient sequential generation of the coefficients
# possible in the > 3F2 case?
# 2. Although the series converges, it may do so slowly, so we need
# convergence acceleration. The acceleration implemented by
# nsum does not always help, so results returned are sometimes
# inaccurate! Can we do better?
# 3. We should check conditions for convergence, and possibly
# do a better job of cancelling out gamma poles if possible.
if z == 1:
# XXX: should also check for division by zero in the
# denominator of the series (cf. hyp2f1)
S = ctx.re(sum(b_s)-sum(a_s))
if S <= 0:
#return ctx.hyper(a_s, b_s, 1-ctx.eps*2, **kwargs) * ctx.inf
return ctx.hyper(a_s, b_s, 0.9, **kwargs) * ctx.inf
if (p,q) == (3,2) and abs(z-1) < 0.05: # and kwargs.get('sum1')
#print "Using alternate summation (experimental)"
a1,a2,a3 = a_s
b1,b2 = b_s
u = b1+b2-a3
initial = ctx.gammaprod([b2-a3,b1-a3,a1,a2],[b2-a3,b1-a3,1,u])
def term(k, _cache={0:initial}):
u = b1+b2-a3+k
if k in _cache:
t = _cache[k]
else:
t = _cache[k-1]
t *= (b1+k-a3-1)*(b2+k-a3-1)
t /= k*(u-1)
_cache[k] = t
return t * ctx.hyp2f1(a1,a2,u,z)
try:
S = ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'),
strict=kwargs.get('strict', True))
return S * ctx.gammaprod([b1,b2],[a1,a2,a3])
except ctx.NoConvergence:
pass
# Try to use convergence acceleration on and close to the unit circle.
# Problem: the convergence acceleration degenerates as |z-1| -> 0,
# except for special cases. Everywhere else, the Shanks transformation
# is very efficient.
if absz < 1.1 and ctx._re(z) <= 1:
def term(kk, _cache={0:ctx.one}):
k = int(kk)
if k != kk:
t = z ** ctx.mpf(kk) / ctx.fac(kk)
for a in a_s: t *= ctx.rf(a,kk)
for b in b_s: t /= ctx.rf(b,kk)
return t
if k in _cache:
return _cache[k]
t = term(k-1)
m = k-1
for j in xrange(p): t *= (a_s[j]+m)
for j in xrange(q): t /= (b_s[j]+m)
t *= z
t /= k
_cache[k] = t
return t
sum_method = kwargs.get('sum_method', 'r+s+e')
try:
return ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'),
strict=kwargs.get('strict', True),
method=sum_method.replace('e',''))
except ctx.NoConvergence:
if 'e' not in sum_method:
raise
pass
if kwargs.get('verbose'):
print("Attempting Euler-Maclaurin summation")
"""
Somewhat slower version (one diffs_exp for each factor).
However, this would be faster with fast direct derivatives
of the gamma function.
def power_diffs(k0):
r = 0
l = ctx.log(z)
while 1:
yield z**ctx.mpf(k0) * l**r
r += 1
def loggamma_diffs(x, reciprocal=False):
sign = (-1) ** reciprocal
yield sign * ctx.loggamma(x)
i = 0
while 1:
yield sign * ctx.psi(i,x)
i += 1
def hyper_diffs(k0):
b2 = b_s + [1]
A = [ctx.diffs_exp(loggamma_diffs(a+k0)) for a in a_s]
B = [ctx.diffs_exp(loggamma_diffs(b+k0,True)) for b in b2]
Z = [power_diffs(k0)]
C = ctx.gammaprod([b for b in b2], [a for a in a_s])
for d in ctx.diffs_prod(A + B + Z):
v = C * d
yield v
"""
def log_diffs(k0):
b2 = b_s + [1]
yield sum(ctx.loggamma(a+k0) for a in a_s) - \
sum(ctx.loggamma(b+k0) for b in b2) + k0*ctx.log(z)
i = 0
while 1:
v = sum(ctx.psi(i,a+k0) for a in a_s) - \
sum(ctx.psi(i,b+k0) for b in b2)
if i == 0:
v += ctx.log(z)
yield v
i += 1
def hyper_diffs(k0):
C = ctx.gammaprod([b for b in b_s], [a for a in a_s])
for d in ctx.diffs_exp(log_diffs(k0)):
v = C * d
yield v
tol = ctx.eps / 1024
prec = ctx.prec
try:
trunc = 50 * ctx.dps
ctx.prec += 20
for i in xrange(5):
head = ctx.fsum(term(k) for k in xrange(trunc))
tail, err = ctx.sumem(term, [trunc, ctx.inf], tol=tol,
adiffs=hyper_diffs(trunc),
verbose=kwargs.get('verbose'),
error=True,
_fast_abort=True)
if err < tol:
v = head + tail
break
trunc *= 2
# Need to increase precision because calculation of
# derivatives may be inaccurate
ctx.prec += ctx.prec//2
if i == 4:
raise ctx.NoConvergence(\
"Euler-Maclaurin summation did not converge")
finally:
ctx.prec = prec
return +v
# Use 1/z transformation
# http://functions.wolfram.com/HypergeometricFunctions/
# HypergeometricPFQ/06/01/05/02/0004/
def h(*args):
a_s = list(args[:p])
b_s = list(args[p:])
Ts = []
recz = ctx.one/z
negz = ctx.fneg(z, exact=True)
for k in range(q+1):
ak = a_s[k]
C = [negz]
Cp = [-ak]
Gn = b_s + [ak] + [a_s[j]-ak for j in range(q+1) if j != k]
Gd = a_s + [b_s[j]-ak for j in range(q)]
Fn = [ak] + [ak-b_s[j]+1 for j in range(q)]
Fd = [1-a_s[j]+ak for j in range(q+1) if j != k]
Ts.append((C, Cp, Gn, Gd, Fn, Fd, recz))
return Ts
return ctx.hypercomb(h, a_s+b_s, **kwargs)
@defun
def _hyp_borel(ctx, p, q, a_s, b_s, z, **kwargs):
if a_s:
a_s, a_types = zip(*a_s)
a_s = list(a_s)
else:
a_s, a_types = [], ()
if b_s:
b_s, b_types = zip(*b_s)
b_s = list(b_s)
else:
b_s, b_types = [], ()
kwargs['maxterms'] = kwargs.get('maxterms', ctx.prec)
try:
return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs)
except ctx.NoConvergence:
pass
prec = ctx.prec
try:
tol = kwargs.get('asymp_tol', ctx.eps/4)
ctx.prec += 10
# hypsum is has a conservative tolerance. So we try again:
def term(k, cache={0:ctx.one}):
if k in cache:
return cache[k]
t = term(k-1)
for a in a_s: t *= (a+(k-1))
for b in b_s: t /= (b+(k-1))
t *= z
t /= k
cache[k] = t
return t
s = ctx.one
for k in xrange(1, ctx.prec):
t = term(k)
s += t
if abs(t) <= tol:
return s
finally:
ctx.prec = prec
if p <= q+3:
contour = kwargs.get('contour')
if not contour:
if ctx.arg(z) < 0.25:
u = z / max(1, abs(z))
if ctx.arg(z) >= 0:
contour = [0, 2j, (2j+2)/u, 2/u, ctx.inf]
else:
contour = [0, -2j, (-2j+2)/u, 2/u, ctx.inf]
#contour = [0, 2j/z, 2/z, ctx.inf]
#contour = [0, 2j, 2/z, ctx.inf]
#contour = [0, 2j, ctx.inf]
else:
contour = [0, ctx.inf]
quad_kwargs = kwargs.get('quad_kwargs', {})
def g(t):
return ctx.exp(-t)*ctx.hyper(a_s, b_s+[1], t*z)
I, err = ctx.quad(g, contour, error=True, **quad_kwargs)
if err <= abs(I)*ctx.eps*8:
return I
raise ctx.NoConvergence
@defun
def _hyp2f2(ctx, a_s, b_s, z, **kwargs):
(a1, a1type), (a2, a2type) = a_s
(b1, b1type), (b2, b2type) = b_s
absz = abs(z)
magz = ctx.mag(z)
orig = ctx.prec
# Asymptotic expansion is ~ exp(z)
asymp_extraprec = magz
# Asymptotic series is in terms of 3F1
can_use_asymptotic = (not kwargs.get('force_series')) and \
(ctx.mag(absz) > 3)
# TODO: much of the following could be shared with 2F3 instead of
# copypasted
if can_use_asymptotic:
#print "using asymp"
try:
try:
ctx.prec += asymp_extraprec
# http://functions.wolfram.com/HypergeometricFunctions/
# Hypergeometric2F2/06/02/02/0002/
def h(a1,a2,b1,b2):
X = a1+a2-b1-b2
A2 = a1+a2
B2 = b1+b2
c = {}
c[0] = ctx.one
c[1] = (A2-1)*X+b1*b2-a1*a2
s1 = 0
k = 0
tprev = 0
while 1:
if k not in c:
uu1 = 1-B2+2*a1+a1**2+2*a2+a2**2-A2*B2+a1*a2+b1*b2+(2*B2-3*(A2+1))*k+2*k**2
uu2 = (k-A2+b1-1)*(k-A2+b2-1)*(k-X-2)
c[k] = ctx.one/k * (uu1*c[k-1]-uu2*c[k-2])
t1 = c[k] * z**(-k)
if abs(t1) < 0.1*ctx.eps:
#print "Convergence :)"
break
# Quit if the series doesn't converge quickly enough
if k > 5 and abs(tprev) / abs(t1) < 1.5:
#print "No convergence :("
raise ctx.NoConvergence
s1 += t1
tprev = t1
k += 1
S = ctx.exp(z)*s1
T1 = [z,S], [X,1], [b1,b2],[a1,a2],[],[],0
T2 = [-z],[-a1],[b1,b2,a2-a1],[a2,b1-a1,b2-a1],[a1,a1-b1+1,a1-b2+1],[a1-a2+1],-1/z
T3 = [-z],[-a2],[b1,b2,a1-a2],[a1,b1-a2,b2-a2],[a2,a2-b1+1,a2-b2+1],[-a1+a2+1],-1/z
return T1, T2, T3
v = ctx.hypercomb(h, [a1,a2,b1,b2], force_series=True, maxterms=4*ctx.prec)
if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,z]) == 5:
v = ctx.re(v)
return v
except ctx.NoConvergence:
pass
finally:
ctx.prec = orig
return ctx.hypsum(2, 2, (a1type, a2type, b1type, b2type), [a1, a2, b1, b2], z, **kwargs)
@defun
def _hyp1f2(ctx, a_s, b_s, z, **kwargs):
(a1, a1type), = a_s
(b1, b1type), (b2, b2type) = b_s
absz = abs(z)
magz = ctx.mag(z)
orig = ctx.prec
# Asymptotic expansion is ~ exp(sqrt(z))
asymp_extraprec = z and magz//2
# Asymptotic series is in terms of 3F0
can_use_asymptotic = (not kwargs.get('force_series')) and \
(ctx.mag(absz) > 19) and \
(ctx.sqrt(absz) > 1.5*orig) # and \
# ctx._hyp_check_convergence([a1, a1-b1+1, a1-b2+1], [],
# 1/absz, orig+40+asymp_extraprec)
# TODO: much of the following could be shared with 2F3 instead of
# copypasted
if can_use_asymptotic:
#print "using asymp"
try:
try:
ctx.prec += asymp_extraprec
# http://functions.wolfram.com/HypergeometricFunctions/
# Hypergeometric1F2/06/02/03/
def h(a1,b1,b2):
X = ctx.mpq_1_2*(a1-b1-b2+ctx.mpq_1_2)
c = {}
c[0] = ctx.one
c[1] = 2*(ctx.mpq_1_4*(3*a1+b1+b2-2)*(a1-b1-b2)+b1*b2-ctx.mpq_3_16)
c[2] = 2*(b1*b2+ctx.mpq_1_4*(a1-b1-b2)*(3*a1+b1+b2-2)-ctx.mpq_3_16)**2+\
ctx.mpq_1_16*(-16*(2*a1-3)*b1*b2 + \
4*(a1-b1-b2)*(-8*a1**2+11*a1+b1+b2-2)-3)
s1 = 0
s2 = 0
k = 0
tprev = 0
while 1:
if k not in c:
uu1 = (3*k**2+(-6*a1+2*b1+2*b2-4)*k + 3*a1**2 - \
(b1-b2)**2 - 2*a1*(b1+b2-2) + ctx.mpq_1_4)
uu2 = (k-a1+b1-b2-ctx.mpq_1_2)*(k-a1-b1+b2-ctx.mpq_1_2)*\
(k-a1+b1+b2-ctx.mpq_5_2)
c[k] = ctx.one/(2*k)*(uu1*c[k-1]-uu2*c[k-2])
w = c[k] * (-z)**(-0.5*k)
t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w
t2 = ctx.j**k * ctx.mpf(2)**(-k) * w
if abs(t1) < 0.1*ctx.eps:
#print "Convergence :)"
break
# Quit if the series doesn't converge quickly enough
if k > 5 and abs(tprev) / abs(t1) < 1.5:
#print "No convergence :("
raise ctx.NoConvergence
s1 += t1
s2 += t2
tprev = t1
k += 1
S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \
ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2
T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2], [a1],\
[], [], 0
T2 = [-z], [-a1], [b1,b2],[b1-a1,b2-a1], \
[a1,a1-b1+1,a1-b2+1], [], 1/z
return T1, T2
v = ctx.hypercomb(h, [a1,b1,b2], force_series=True, maxterms=4*ctx.prec)
if sum(ctx._is_real_type(u) for u in [a1,b1,b2,z]) == 4:
v = ctx.re(v)
return v
except ctx.NoConvergence:
pass
finally:
ctx.prec = orig
#print "not using asymp"
return ctx.hypsum(1, 2, (a1type, b1type, b2type), [a1, b1, b2], z, **kwargs)
@defun
def _hyp2f3(ctx, a_s, b_s, z, **kwargs):
(a1, a1type), (a2, a2type) = a_s
(b1, b1type), (b2, b2type), (b3, b3type) = b_s
absz = abs(z)
magz = ctx.mag(z)
# Asymptotic expansion is ~ exp(sqrt(z))
asymp_extraprec = z and magz//2
orig = ctx.prec
# Asymptotic series is in terms of 4F1
# The square root below empirically provides a plausible criterion
# for the leading series to converge
can_use_asymptotic = (not kwargs.get('force_series')) and \
(ctx.mag(absz) > 19) and (ctx.sqrt(absz) > 1.5*orig)
if can_use_asymptotic:
#print "using asymp"
try:
try:
ctx.prec += asymp_extraprec
# http://functions.wolfram.com/HypergeometricFunctions/
# Hypergeometric2F3/06/02/03/01/0002/
def h(a1,a2,b1,b2,b3):
X = ctx.mpq_1_2*(a1+a2-b1-b2-b3+ctx.mpq_1_2)
A2 = a1+a2
B3 = b1+b2+b3
A = a1*a2
B = b1*b2+b3*b2+b1*b3
R = b1*b2*b3
c = {}
c[0] = ctx.one
c[1] = 2*(B - A + ctx.mpq_1_4*(3*A2+B3-2)*(A2-B3) - ctx.mpq_3_16)
c[2] = ctx.mpq_1_2*c[1]**2 + ctx.mpq_1_16*(-16*(2*A2-3)*(B-A) + 32*R +\
4*(-8*A2**2 + 11*A2 + 8*A + B3 - 2)*(A2-B3)-3)
s1 = 0
s2 = 0
k = 0
tprev = 0
while 1:
if k not in c:
uu1 = (k-2*X-3)*(k-2*X-2*b1-1)*(k-2*X-2*b2-1)*\
(k-2*X-2*b3-1)
uu2 = (4*(k-1)**3 - 6*(4*X+B3)*(k-1)**2 + \
2*(24*X**2+12*B3*X+4*B+B3-1)*(k-1) - 32*X**3 - \
24*B3*X**2 - 4*B - 8*R - 4*(4*B+B3-1)*X + 2*B3-1)
uu3 = (5*(k-1)**2+2*(-10*X+A2-3*B3+3)*(k-1)+2*c[1])
c[k] = ctx.one/(2*k)*(uu1*c[k-3]-uu2*c[k-2]+uu3*c[k-1])
w = c[k] * ctx.power(-z, -0.5*k)
t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w
t2 = ctx.j**k * ctx.mpf(2)**(-k) * w
if abs(t1) < 0.1*ctx.eps:
break
# Quit if the series doesn't converge quickly enough
if k > 5 and abs(tprev) / abs(t1) < 1.5:
raise ctx.NoConvergence
s1 += t1
s2 += t2
tprev = t1
k += 1
S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \
ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2
T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2, b3], [a1, a2],\
[], [], 0
T2 = [-z], [-a1], [b1,b2,b3,a2-a1],[a2,b1-a1,b2-a1,b3-a1], \
[a1,a1-b1+1,a1-b2+1,a1-b3+1], [a1-a2+1], 1/z
T3 = [-z], [-a2], [b1,b2,b3,a1-a2],[a1,b1-a2,b2-a2,b3-a2], \
[a2,a2-b1+1,a2-b2+1,a2-b3+1],[-a1+a2+1], 1/z
return T1, T2, T3
v = ctx.hypercomb(h, [a1,a2,b1,b2,b3], force_series=True, maxterms=4*ctx.prec)
if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,b3,z]) == 6:
v = ctx.re(v)
return v
except ctx.NoConvergence:
pass
finally:
ctx.prec = orig
return ctx.hypsum(2, 3, (a1type, a2type, b1type, b2type, b3type), [a1, a2, b1, b2, b3], z, **kwargs)
@defun
def _hyp2f0(ctx, a_s, b_s, z, **kwargs):
(a, atype), (b, btype) = a_s
# We want to try aggressively to use the asymptotic expansion,
# and fall back only when absolutely necessary
try:
kwargsb = kwargs.copy()
kwargsb['maxterms'] = kwargsb.get('maxterms', ctx.prec)
return ctx.hypsum(2, 0, (atype,btype), [a,b], z, **kwargsb)
except ctx.NoConvergence:
if kwargs.get('force_series'):
raise
pass
def h(a, b):
w = ctx.sinpi(b)
rz = -1/z
T1 = ([ctx.pi,w,rz],[1,-1,a],[],[a-b+1,b],[a],[b],rz)
T2 = ([-ctx.pi,w,rz],[1,-1,1+a-b],[],[a,2-b],[a-b+1],[2-b],rz)
return T1, T2
return ctx.hypercomb(h, [a, 1+a-b], **kwargs)
@defun
def meijerg(ctx, a_s, b_s, z, r=1, series=None, **kwargs):
an, ap = a_s
bm, bq = b_s
n = len(an)
p = n + len(ap)
m = len(bm)
q = m + len(bq)
a = an+ap
b = bm+bq
a = [ctx.convert(_) for _ in a]
b = [ctx.convert(_) for _ in b]
z = ctx.convert(z)
if series is None:
if p < q: series = 1
if p > q: series = 2
if p == q:
if m+n == p and abs(z) > 1:
series = 2
else:
series = 1
if kwargs.get('verbose'):
print("Meijer G m,n,p,q,series =", m,n,p,q,series)
if series == 1:
def h(*args):
a = args[:p]
b = args[p:]
terms = []
for k in range(m):
bases = [z]
expts = [b[k]/r]
gn = [b[j]-b[k] for j in range(m) if j != k]
gn += [1-a[j]+b[k] for j in range(n)]
gd = [a[j]-b[k] for j in range(n,p)]
gd += [1-b[j]+b[k] for j in range(m,q)]
hn = [1-a[j]+b[k] for j in range(p)]
hd = [1-b[j]+b[k] for j in range(q) if j != k]
hz = (-ctx.one)**(p-m-n) * z**(ctx.one/r)
terms.append((bases, expts, gn, gd, hn, hd, hz))
return terms
else:
def h(*args):
a = args[:p]
b = args[p:]
terms = []
for k in range(n):
bases = [z]
if r == 1:
expts = [a[k]-1]
else:
expts = [(a[k]-1)/ctx.convert(r)]
gn = [a[k]-a[j] for j in range(n) if j != k]
gn += [1-a[k]+b[j] for j in range(m)]
gd = [a[k]-b[j] for j in range(m,q)]
gd += [1-a[k]+a[j] for j in range(n,p)]
hn = [1-a[k]+b[j] for j in range(q)]
hd = [1+a[j]-a[k] for j in range(p) if j != k]
hz = (-ctx.one)**(q-m-n) / z**(ctx.one/r)
terms.append((bases, expts, gn, gd, hn, hd, hz))
return terms
return ctx.hypercomb(h, a+b, **kwargs)
@defun_wrapped
def appellf1(ctx,a,b1,b2,c,x,y,**kwargs):
# Assume x smaller
# We will use x for the outer loop
if abs(x) > abs(y):
x, y = y, x
b1, b2 = b2, b1
def ok(x):
return abs(x) < 0.99
# Finite cases
if ctx.isnpint(a):
pass
elif ctx.isnpint(b1):
pass
elif ctx.isnpint(b2):
x, y, b1, b2 = y, x, b2, b1
else:
#print x, y
# Note: ok if |y| > 1, because
# 2F1 implements analytic continuation
if not ok(x):
u1 = (x-y)/(x-1)
if not ok(u1):
raise ValueError("Analytic continuation not implemented")
#print "Using analytic continuation"
return (1-x)**(-b1)*(1-y)**(c-a-b2)*\
ctx.appellf1(c-a,b1,c-b1-b2,c,u1,y,**kwargs)
return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]}, {'m+n':[c]}, x,y, **kwargs)
@defun
def appellf2(ctx,a,b1,b2,c1,c2,x,y,**kwargs):
# TODO: continuation
return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]},
{'m':[c1],'n':[c2]}, x,y, **kwargs)
@defun
def appellf3(ctx,a1,a2,b1,b2,c,x,y,**kwargs):
outer_polynomial = ctx.isnpint(a1) or ctx.isnpint(b1)
inner_polynomial = ctx.isnpint(a2) or ctx.isnpint(b2)
if not outer_polynomial:
if inner_polynomial or abs(x) > abs(y):
x, y = y, x
a1,a2,b1,b2 = a2,a1,b2,b1
return ctx.hyper2d({'m':[a1,b1],'n':[a2,b2]}, {'m+n':[c]},x,y,**kwargs)
@defun
def appellf4(ctx,a,b,c1,c2,x,y,**kwargs):
# TODO: continuation
return ctx.hyper2d({'m+n':[a,b]}, {'m':[c1],'n':[c2]},x,y,**kwargs)
@defun
def hyper2d(ctx, a, b, x, y, **kwargs):
r"""
Sums the generalized 2D hypergeometric series
.. math ::
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
\frac{P((a),m,n)}{Q((b),m,n)}
\frac{x^m y^n} {m! n!}
where `(a) = (a_1,\ldots,a_r)`, `(b) = (b_1,\ldots,b_s)` and where
`P` and `Q` are products of rising factorials such as `(a_j)_n` or
`(a_j)_{m+n}`. `P` and `Q` are specified in the form of dicts, with
the `m` and `n` dependence as keys and parameter lists as values.
The supported rising factorials are given in the following table
(note that only a few are supported in `Q`):
+------------+-------------------+--------+
| Key | Rising factorial | `Q` |
+============+===================+========+
| ``'m'`` | `(a_j)_m` | Yes |
+------------+-------------------+--------+
| ``'n'`` | `(a_j)_n` | Yes |
+------------+-------------------+--------+
| ``'m+n'`` | `(a_j)_{m+n}` | Yes |
+------------+-------------------+--------+
| ``'m-n'`` | `(a_j)_{m-n}` | No |
+------------+-------------------+--------+
| ``'n-m'`` | `(a_j)_{n-m}` | No |
+------------+-------------------+--------+
| ``'2m+n'`` | `(a_j)_{2m+n}` | No |
+------------+-------------------+--------+
| ``'2m-n'`` | `(a_j)_{2m-n}` | No |
+------------+-------------------+--------+
| ``'2n-m'`` | `(a_j)_{2n-m}` | No |
+------------+-------------------+--------+
For example, the Appell F1 and F4 functions
.. math ::
F_1 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
\frac{(a)_{m+n} (b)_m (c)_n}{(d)_{m+n}}
\frac{x^m y^n}{m! n!}
F_4 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
\frac{(a)_{m+n} (b)_{m+n}}{(c)_m (d)_{n}}
\frac{x^m y^n}{m! n!}
can be represented respectively as
``hyper2d({'m+n':[a], 'm':[b], 'n':[c]}, {'m+n':[d]}, x, y)``
``hyper2d({'m+n':[a,b]}, {'m':[c], 'n':[d]}, x, y)``
More generally, :func:`~mpmath.hyper2d` can evaluate any of the 34 distinct
convergent second-order (generalized Gaussian) hypergeometric
series enumerated by Horn, as well as the Kampe de Feriet
function.
The series is computed by rewriting it so that the inner
series (i.e. the series containing `n` and `y`) has the form of an
ordinary generalized hypergeometric series and thereby can be
evaluated efficiently using :func:`~mpmath.hyper`. If possible,
manually swapping `x` and `y` and the corresponding parameters
can sometimes give better results.
**Examples**
Two separable cases: a product of two geometric series, and a
product of two Gaussian hypergeometric functions::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> x, y = mpf(0.25), mpf(0.5)
>>> hyper2d({'m':1,'n':1}, {}, x,y)
2.666666666666666666666667
>>> 1/(1-x)/(1-y)
2.666666666666666666666667
>>> hyper2d({'m':[1,2],'n':[3,4]}, {'m':[5],'n':[6]}, x,y)
4.164358531238938319669856
>>> hyp2f1(1,2,5,x)*hyp2f1(3,4,6,y)
4.164358531238938319669856
Some more series that can be done in closed form::
>>> hyper2d({'m':1,'n':1},{'m+n':1},x,y)
2.013417124712514809623881
>>> (exp(x)*x-exp(y)*y)/(x-y)
2.013417124712514809623881
Six of the 34 Horn functions, G1-G3 and H1-H3::
>>> from mpmath import *
>>> mp.dps = 10; mp.pretty = True
>>> x, y = 0.0625, 0.125
>>> a1,a2,b1,b2,c1,c2,d = 1.1,-1.2,-1.3,-1.4,1.5,-1.6,1.7
>>> hyper2d({'m+n':a1,'n-m':b1,'m-n':b2},{},x,y) # G1
1.139090746
>>> nsum(lambda m,n: rf(a1,m+n)*rf(b1,n-m)*rf(b2,m-n)*\
... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
1.139090746
>>> hyper2d({'m':a1,'n':a2,'n-m':b1,'m-n':b2},{},x,y) # G2
0.9503682696
>>> nsum(lambda m,n: rf(a1,m)*rf(a2,n)*rf(b1,n-m)*rf(b2,m-n)*\
... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
0.9503682696
>>> hyper2d({'2n-m':a1,'2m-n':a2},{},x,y) # G3
1.029372029
>>> nsum(lambda m,n: rf(a1,2*n-m)*rf(a2,2*m-n)*\
... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
1.029372029
>>> hyper2d({'m-n':a1,'m+n':b1,'n':c1},{'m':d},x,y) # H1
-1.605331256
>>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m+n)*rf(c1,n)/rf(d,m)*\
... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
-1.605331256
>>> hyper2d({'m-n':a1,'m':b1,'n':[c1,c2]},{'m':d},x,y) # H2
-2.35405404
>>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m)*rf(c1,n)*rf(c2,n)/rf(d,m)*\
... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
-2.35405404
>>> hyper2d({'2m+n':a1,'n':b1},{'m+n':c1},x,y) # H3
0.974479074
>>> nsum(lambda m,n: rf(a1,2*m+n)*rf(b1,n)/rf(c1,m+n)*\
... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf])
0.974479074
**References**
1. [SrivastavaKarlsson]_
2. [Weisstein]_ http://mathworld.wolfram.com/HornFunction.html
3. [Weisstein]_ http://mathworld.wolfram.com/AppellHypergeometricFunction.html
"""
x = ctx.convert(x)
y = ctx.convert(y)
def parse(dct, key):
args = dct.pop(key, [])
try:
args = list(args)
except TypeError:
args = [args]
return [ctx.convert(arg) for arg in args]
a_s = dict(a)
b_s = dict(b)
a_m = parse(a, 'm')
a_n = parse(a, 'n')
a_m_add_n = parse(a, 'm+n')
a_m_sub_n = parse(a, 'm-n')
a_n_sub_m = parse(a, 'n-m')
a_2m_add_n = parse(a, '2m+n')
a_2m_sub_n = parse(a, '2m-n')
a_2n_sub_m = parse(a, '2n-m')
b_m = parse(b, 'm')
b_n = parse(b, 'n')
b_m_add_n = parse(b, 'm+n')
if a: raise ValueError("unsupported key: %r" % a.keys()[0])
if b: raise ValueError("unsupported key: %r" % b.keys()[0])
s = 0
outer = ctx.one
m = ctx.mpf(0)
ok_count = 0
prec = ctx.prec
maxterms = kwargs.get('maxterms', 20*prec)
try:
ctx.prec += 10
tol = +ctx.eps
while 1:
inner_sign = 1
outer_sign = 1
inner_a = list(a_n)
inner_b = list(b_n)
outer_a = [a+m for a in a_m]
outer_b = [b+m for b in b_m]
# (a)_{m+n} = (a)_m (a+m)_n
for a in a_m_add_n:
a = a+m
inner_a.append(a)
outer_a.append(a)
# (b)_{m+n} = (b)_m (b+m)_n
for b in b_m_add_n:
b = b+m
inner_b.append(b)
outer_b.append(b)
# (a)_{n-m} = (a-m)_n / (a-m)_m
for a in a_n_sub_m:
inner_a.append(a-m)
outer_b.append(a-m-1)
# (a)_{m-n} = (-1)^(m+n) (1-a-m)_m / (1-a-m)_n
for a in a_m_sub_n:
inner_sign *= (-1)
outer_sign *= (-1)**(m)
inner_b.append(1-a-m)
outer_a.append(-a-m)
# (a)_{2m+n} = (a)_{2m} (a+2m)_n
for a in a_2m_add_n:
inner_a.append(a+2*m)
outer_a.append((a+2*m)*(1+a+2*m))
# (a)_{2m-n} = (-1)^(2m+n) (1-a-2m)_{2m} / (1-a-2m)_n
for a in a_2m_sub_n:
inner_sign *= (-1)
inner_b.append(1-a-2*m)
outer_a.append((a+2*m)*(1+a+2*m))
# (a)_{2n-m} = 4^n ((a-m)/2)_n ((a-m+1)/2)_n / (a-m)_m
for a in a_2n_sub_m:
inner_sign *= 4
inner_a.append(0.5*(a-m))
inner_a.append(0.5*(a-m+1))
outer_b.append(a-m-1)
inner = ctx.hyper(inner_a, inner_b, inner_sign*y,
zeroprec=ctx.prec, **kwargs)
term = outer * inner * outer_sign
if abs(term) < tol:
ok_count += 1
else:
ok_count = 0
if ok_count >= 3 or not outer:
break
s += term
for a in outer_a: outer *= a
for b in outer_b: outer /= b
m += 1
outer = outer * x / m
if m > maxterms:
raise ctx.NoConvergence("maxterms exceeded in hyper2d")
finally:
ctx.prec = prec
return +s
"""
@defun
def kampe_de_feriet(ctx,a,b,c,d,e,f,x,y,**kwargs):
return ctx.hyper2d({'m+n':a,'m':b,'n':c},
{'m+n':d,'m':e,'n':f}, x,y, **kwargs)
"""
@defun
def bihyper(ctx, a_s, b_s, z, **kwargs):
r"""
Evaluates the bilateral hypergeometric series
.. math ::
\,_AH_B(a_1, \ldots, a_k; b_1, \ldots, b_B; z) =
\sum_{n=-\infty}^{\infty}
\frac{(a_1)_n \ldots (a_A)_n}
{(b_1)_n \ldots (b_B)_n} \, z^n
where, for direct convergence, `A = B` and `|z| = 1`, although a
regularized sum exists more generally by considering the
bilateral series as a sum of two ordinary hypergeometric
functions. In order for the series to make sense, none of the
parameters may be integers.
**Examples**
The value of `\,_2H_2` at `z = 1` is given by Dougall's formula::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> a,b,c,d = 0.5, 1.5, 2.25, 3.25
>>> bihyper([a,b],[c,d],1)
-14.49118026212345786148847
>>> gammaprod([c,d,1-a,1-b,c+d-a-b-1],[c-a,d-a,c-b,d-b])
-14.49118026212345786148847
The regularized function `\,_1H_0` can be expressed as the
sum of one `\,_2F_0` function and one `\,_1F_1` function::
>>> a = mpf(0.25)
>>> z = mpf(0.75)
>>> bihyper([a], [], z)
(0.2454393389657273841385582 + 0.2454393389657273841385582j)
>>> hyper([a,1],[],z) + (hyper([1],[1-a],-1/z)-1)
(0.2454393389657273841385582 + 0.2454393389657273841385582j)
>>> hyper([a,1],[],z) + hyper([1],[2-a],-1/z)/z/(a-1)
(0.2454393389657273841385582 + 0.2454393389657273841385582j)
**References**
1. [Slater]_ (chapter 6: "Bilateral Series", pp. 180-189)
2. [Wikipedia]_ http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series
"""
z = ctx.convert(z)
c_s = a_s + b_s
p = len(a_s)
q = len(b_s)
if (p, q) == (0,0) or (p, q) == (1,1):
return ctx.zero * z
neg = (p-q) % 2
def h(*c_s):
a_s = list(c_s[:p])
b_s = list(c_s[p:])
aa_s = [2-b for b in b_s]
bb_s = [2-a for a in a_s]
rp = [(-1)**neg * z] + [1-b for b in b_s] + [1-a for a in a_s]
rc = [-1] + [1]*len(b_s) + [-1]*len(a_s)
T1 = [], [], [], [], a_s + [1], b_s, z
T2 = rp, rc, [], [], aa_s + [1], bb_s, (-1)**neg / z
return T1, T2
return ctx.hypercomb(h, c_s, **kwargs)
|