File size: 36,410 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
from __future__ import print_function

from ..libmp.backend import xrange
from .functions import defun, defun_wrapped, defun_static

@defun
def stieltjes(ctx, n, a=1):
    n = ctx.convert(n)
    a = ctx.convert(a)
    if n < 0:
        return ctx.bad_domain("Stieltjes constants defined for n >= 0")
    if hasattr(ctx, "stieltjes_cache"):
        stieltjes_cache = ctx.stieltjes_cache
    else:
        stieltjes_cache = ctx.stieltjes_cache = {}
    if a == 1:
        if n == 0:
            return +ctx.euler
        if n in stieltjes_cache:
            prec, s = stieltjes_cache[n]
            if prec >= ctx.prec:
                return +s
    mag = 1
    def f(x):
        xa = x/a
        v = (xa-ctx.j)*ctx.ln(a-ctx.j*x)**n/(1+xa**2)/(ctx.exp(2*ctx.pi*x)-1)
        return ctx._re(v) / mag
    orig = ctx.prec
    try:
        # Normalize integrand by approx. magnitude to
        # speed up quadrature (which uses absolute error)
        if n > 50:
            ctx.prec = 20
            mag = ctx.quad(f, [0,ctx.inf], maxdegree=3)
        ctx.prec = orig + 10 + int(n**0.5)
        s = ctx.quad(f, [0,ctx.inf], maxdegree=20)
        v = ctx.ln(a)**n/(2*a) - ctx.ln(a)**(n+1)/(n+1) + 2*s/a*mag
    finally:
        ctx.prec = orig
    if a == 1 and ctx.isint(n):
        stieltjes_cache[n] = (ctx.prec, v)
    return +v

@defun_wrapped
def siegeltheta(ctx, t, derivative=0):
    d = int(derivative)
    if  (t == ctx.inf or t == ctx.ninf):
        if d < 2:
            if t == ctx.ninf and d == 0:
                return ctx.ninf
            return ctx.inf
        else:
            return ctx.zero
    if d == 0:
        if ctx._im(t):
            # XXX: cancellation occurs
            a = ctx.loggamma(0.25+0.5j*t)
            b = ctx.loggamma(0.25-0.5j*t)
            return -ctx.ln(ctx.pi)/2*t - 0.5j*(a-b)
        else:
            if ctx.isinf(t):
                return t
            return ctx._im(ctx.loggamma(0.25+0.5j*t)) - ctx.ln(ctx.pi)/2*t
    if d > 0:
        a = (-0.5j)**(d-1)*ctx.polygamma(d-1, 0.25-0.5j*t)
        b = (0.5j)**(d-1)*ctx.polygamma(d-1, 0.25+0.5j*t)
        if ctx._im(t):
            if d == 1:
                return -0.5*ctx.log(ctx.pi)+0.25*(a+b)
            else:
                return 0.25*(a+b)
        else:
            if d == 1:
                return ctx._re(-0.5*ctx.log(ctx.pi)+0.25*(a+b))
            else:
                return ctx._re(0.25*(a+b))

@defun_wrapped
def grampoint(ctx, n):
    # asymptotic expansion, from
    # http://mathworld.wolfram.com/GramPoint.html
    g = 2*ctx.pi*ctx.exp(1+ctx.lambertw((8*n+1)/(8*ctx.e)))
    return ctx.findroot(lambda t: ctx.siegeltheta(t)-ctx.pi*n, g)


@defun_wrapped
def siegelz(ctx, t, **kwargs):
    d = int(kwargs.get("derivative", 0))
    t = ctx.convert(t)
    t1 = ctx._re(t)
    t2 = ctx._im(t)
    prec = ctx.prec
    try:
        if abs(t1) > 500*prec and t2**2 < t1:
            v = ctx.rs_z(t, d)
            if ctx._is_real_type(t):
                return ctx._re(v)
            return v
    except NotImplementedError:
        pass
    ctx.prec += 21
    e1 = ctx.expj(ctx.siegeltheta(t))
    z = ctx.zeta(0.5+ctx.j*t)
    if d == 0:
        v = e1*z
        ctx.prec=prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    z1 = ctx.zeta(0.5+ctx.j*t, derivative=1)
    theta1 = ctx.siegeltheta(t, derivative=1)
    if d == 1:
        v =  ctx.j*e1*(z1+z*theta1)
        ctx.prec=prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    z2 = ctx.zeta(0.5+ctx.j*t, derivative=2)
    theta2 = ctx.siegeltheta(t, derivative=2)
    comb1 = theta1**2-ctx.j*theta2
    if d == 2:
        def terms():
            return [2*z1*theta1, z2, z*comb1]
        v = ctx.sum_accurately(terms, 1)
        v =  -e1*v
        ctx.prec = prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    ctx.prec += 10
    z3 = ctx.zeta(0.5+ctx.j*t, derivative=3)
    theta3 = ctx.siegeltheta(t, derivative=3)
    comb2 = theta1**3-3*ctx.j*theta1*theta2-theta3
    if d == 3:
        def terms():
            return  [3*theta1*z2, 3*z1*comb1, z3+z*comb2]
        v = ctx.sum_accurately(terms, 1)
        v =  -ctx.j*e1*v
        ctx.prec = prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    z4 = ctx.zeta(0.5+ctx.j*t, derivative=4)
    theta4 = ctx.siegeltheta(t, derivative=4)
    def terms():
        return [theta1**4, -6*ctx.j*theta1**2*theta2, -3*theta2**2,
            -4*theta1*theta3, ctx.j*theta4]
    comb3 = ctx.sum_accurately(terms, 1)
    if d == 4:
        def terms():
            return  [6*theta1**2*z2, -6*ctx.j*z2*theta2, 4*theta1*z3,
                 4*z1*comb2, z4, z*comb3]
        v = ctx.sum_accurately(terms, 1)
        v =  e1*v
        ctx.prec = prec
        if ctx._is_real_type(t):
            return ctx._re(v)
        return +v
    if d > 4:
        h = lambda x: ctx.siegelz(x, derivative=4)
        return ctx.diff(h, t, n=d-4)


_zeta_zeros = [
14.134725142,21.022039639,25.010857580,30.424876126,32.935061588,
37.586178159,40.918719012,43.327073281,48.005150881,49.773832478,
52.970321478,56.446247697,59.347044003,60.831778525,65.112544048,
67.079810529,69.546401711,72.067157674,75.704690699,77.144840069,
79.337375020,82.910380854,84.735492981,87.425274613,88.809111208,
92.491899271,94.651344041,95.870634228,98.831194218,101.317851006,
103.725538040,105.446623052,107.168611184,111.029535543,111.874659177,
114.320220915,116.226680321,118.790782866,121.370125002,122.946829294,
124.256818554,127.516683880,129.578704200,131.087688531,133.497737203,
134.756509753,138.116042055,139.736208952,141.123707404,143.111845808,
146.000982487,147.422765343,150.053520421,150.925257612,153.024693811,
156.112909294,157.597591818,158.849988171,161.188964138,163.030709687,
165.537069188,167.184439978,169.094515416,169.911976479,173.411536520,
174.754191523,176.441434298,178.377407776,179.916484020,182.207078484,
184.874467848,185.598783678,187.228922584,189.416158656,192.026656361,
193.079726604,195.265396680,196.876481841,198.015309676,201.264751944,
202.493594514,204.189671803,205.394697202,207.906258888,209.576509717,
211.690862595,213.347919360,214.547044783,216.169538508,219.067596349,
220.714918839,221.430705555,224.007000255,224.983324670,227.421444280,
229.337413306,231.250188700,231.987235253,233.693404179,236.524229666,
]

def _load_zeta_zeros(url):
    import urllib
    d = urllib.urlopen(url)
    L = [float(x) for x in d.readlines()]
    # Sanity check
    assert round(L[0]) == 14
    _zeta_zeros[:] = L

@defun
def oldzetazero(ctx, n, url='http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1'):
    n = int(n)
    if n < 0:
        return ctx.zetazero(-n).conjugate()
    if n == 0:
        raise ValueError("n must be nonzero")
    if n > len(_zeta_zeros) and n <= 100000:
        _load_zeta_zeros(url)
    if n > len(_zeta_zeros):
        raise NotImplementedError("n too large for zetazeros")
    return ctx.mpc(0.5, ctx.findroot(ctx.siegelz, _zeta_zeros[n-1]))

@defun_wrapped
def riemannr(ctx, x):
    if x == 0:
        return ctx.zero
    # Check if a simple asymptotic estimate is accurate enough
    if abs(x) > 1000:
        a = ctx.li(x)
        b = 0.5*ctx.li(ctx.sqrt(x))
        if abs(b) < abs(a)*ctx.eps:
            return a
    if abs(x) < 0.01:
        # XXX
        ctx.prec += int(-ctx.log(abs(x),2))
    # Sum Gram's series
    s = t = ctx.one
    u = ctx.ln(x)
    k = 1
    while abs(t) > abs(s)*ctx.eps:
        t = t * u / k
        s += t / (k * ctx._zeta_int(k+1))
        k += 1
    return s

@defun_static
def primepi(ctx, x):
    x = int(x)
    if x < 2:
        return 0
    return len(ctx.list_primes(x))

# TODO: fix the interface wrt contexts
@defun_wrapped
def primepi2(ctx, x):
    x = int(x)
    if x < 2:
        return ctx._iv.zero
    if x < 2657:
        return ctx._iv.mpf(ctx.primepi(x))
    mid = ctx.li(x)
    # Schoenfeld's estimate for x >= 2657, assuming RH
    err = ctx.sqrt(x,rounding='u')*ctx.ln(x,rounding='u')/8/ctx.pi(rounding='d')
    a = ctx.floor((ctx._iv.mpf(mid)-err).a, rounding='d')
    b = ctx.ceil((ctx._iv.mpf(mid)+err).b, rounding='u')
    return ctx._iv.mpf([a,b])

@defun_wrapped
def primezeta(ctx, s):
    if ctx.isnan(s):
        return s
    if ctx.re(s) <= 0:
        raise ValueError("prime zeta function defined only for re(s) > 0")
    if s == 1:
        return ctx.inf
    if s == 0.5:
        return ctx.mpc(ctx.ninf, ctx.pi)
    r = ctx.re(s)
    if r > ctx.prec:
        return 0.5**s
    else:
        wp = ctx.prec + int(r)
        def terms():
            orig = ctx.prec
            # zeta ~ 1+eps; need to set precision
            # to get logarithm accurately
            k = 0
            while 1:
                k += 1
                u = ctx.moebius(k)
                if not u:
                    continue
                ctx.prec = wp
                t = u*ctx.ln(ctx.zeta(k*s))/k
                if not t:
                    return
                #print ctx.prec, ctx.nstr(t)
                ctx.prec = orig
                yield t
    return ctx.sum_accurately(terms)

# TODO: for bernpoly and eulerpoly, ensure that all exact zeros are covered

@defun_wrapped
def bernpoly(ctx, n, z):
    # Slow implementation:
    #return sum(ctx.binomial(n,k)*ctx.bernoulli(k)*z**(n-k) for k in xrange(0,n+1))
    n = int(n)
    if n < 0:
        raise ValueError("Bernoulli polynomials only defined for n >= 0")
    if z == 0 or (z == 1 and n > 1):
        return ctx.bernoulli(n)
    if z == 0.5:
        return (ctx.ldexp(1,1-n)-1)*ctx.bernoulli(n)
    if n <= 3:
        if n == 0: return z ** 0
        if n == 1: return z - 0.5
        if n == 2: return (6*z*(z-1)+1)/6
        if n == 3: return z*(z*(z-1.5)+0.5)
    if ctx.isinf(z):
        return z ** n
    if ctx.isnan(z):
        return z
    if abs(z) > 2:
        def terms():
            t = ctx.one
            yield t
            r = ctx.one/z
            k = 1
            while k <= n:
                t = t*(n+1-k)/k*r
                if not (k > 2 and k & 1):
                    yield t*ctx.bernoulli(k)
                k += 1
        return ctx.sum_accurately(terms) * z**n
    else:
        def terms():
            yield ctx.bernoulli(n)
            t = ctx.one
            k = 1
            while k <= n:
                t = t*(n+1-k)/k * z
                m = n-k
                if not (m > 2 and m & 1):
                    yield t*ctx.bernoulli(m)
                k += 1
        return ctx.sum_accurately(terms)

@defun_wrapped
def eulerpoly(ctx, n, z):
    n = int(n)
    if n < 0:
        raise ValueError("Euler polynomials only defined for n >= 0")
    if n <= 2:
        if n == 0: return z ** 0
        if n == 1: return z - 0.5
        if n == 2: return z*(z-1)
    if ctx.isinf(z):
        return z**n
    if ctx.isnan(z):
        return z
    m = n+1
    if z == 0:
        return -2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
    if z == 1:
        return 2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
    if z == 0.5:
        if n % 2:
            return ctx.zero
        # Use exact code for Euler numbers
        if n < 100 or n*ctx.mag(0.46839865*n) < ctx.prec*0.25:
            return ctx.ldexp(ctx._eulernum(n), -n)
    # http://functions.wolfram.com/Polynomials/EulerE2/06/01/02/01/0002/
    def terms():
        t = ctx.one
        k = 0
        w = ctx.ldexp(1,n+2)
        while 1:
            v = n-k+1
            if not (v > 2 and v & 1):
                yield (2-w)*ctx.bernoulli(v)*t
            k += 1
            if k > n:
                break
            t = t*z*(n-k+2)/k
            w *= 0.5
    return ctx.sum_accurately(terms) / m

@defun
def eulernum(ctx, n, exact=False):
    n = int(n)
    if exact:
        return int(ctx._eulernum(n))
    if n < 100:
        return ctx.mpf(ctx._eulernum(n))
    if n % 2:
        return ctx.zero
    return ctx.ldexp(ctx.eulerpoly(n,0.5), n)

# TODO: this should be implemented low-level
def polylog_series(ctx, s, z):
    tol = +ctx.eps
    l = ctx.zero
    k = 1
    zk = z
    while 1:
        term = zk / k**s
        l += term
        if abs(term) < tol:
            break
        zk *= z
        k += 1
    return l

def polylog_continuation(ctx, n, z):
    if n < 0:
        return z*0
    twopij = 2j * ctx.pi
    a = -twopij**n/ctx.fac(n) * ctx.bernpoly(n, ctx.ln(z)/twopij)
    if ctx._is_real_type(z) and z < 0:
        a = ctx._re(a)
    if ctx._im(z) < 0 or (ctx._im(z) == 0 and ctx._re(z) >= 1):
        a -= twopij*ctx.ln(z)**(n-1)/ctx.fac(n-1)
    return a

def polylog_unitcircle(ctx, n, z):
    tol = +ctx.eps
    if n > 1:
        l = ctx.zero
        logz = ctx.ln(z)
        logmz = ctx.one
        m = 0
        while 1:
            if (n-m) != 1:
                term = ctx.zeta(n-m) * logmz / ctx.fac(m)
                if term and abs(term) < tol:
                    break
                l += term
            logmz *= logz
            m += 1
        l += ctx.ln(z)**(n-1)/ctx.fac(n-1)*(ctx.harmonic(n-1)-ctx.ln(-ctx.ln(z)))
    elif n < 1:  # else
        l = ctx.fac(-n)*(-ctx.ln(z))**(n-1)
        logz = ctx.ln(z)
        logkz = ctx.one
        k = 0
        while 1:
            b = ctx.bernoulli(k-n+1)
            if b:
                term = b*logkz/(ctx.fac(k)*(k-n+1))
                if abs(term) < tol:
                    break
                l -= term
            logkz *= logz
            k += 1
    else:
        raise ValueError
    if ctx._is_real_type(z) and z < 0:
        l = ctx._re(l)
    return l

def polylog_general(ctx, s, z):
    v = ctx.zero
    u = ctx.ln(z)
    if not abs(u) < 5: # theoretically |u| < 2*pi
        j = ctx.j
        v = 1-s
        y = ctx.ln(-z)/(2*ctx.pi*j)
        return ctx.gamma(v)*(j**v*ctx.zeta(v,0.5+y) + j**-v*ctx.zeta(v,0.5-y))/(2*ctx.pi)**v
    t = 1
    k = 0
    while 1:
        term = ctx.zeta(s-k) * t
        if abs(term) < ctx.eps:
            break
        v += term
        k += 1
        t *= u
        t /= k
    return ctx.gamma(1-s)*(-u)**(s-1) + v

@defun_wrapped
def polylog(ctx, s, z):
    s = ctx.convert(s)
    z = ctx.convert(z)
    if z == 1:
        return ctx.zeta(s)
    if z == -1:
        return -ctx.altzeta(s)
    if s == 0:
        return z/(1-z)
    if s == 1:
        return -ctx.ln(1-z)
    if s == -1:
        return z/(1-z)**2
    if abs(z) <= 0.75 or (not ctx.isint(s) and abs(z) < 0.9):
        return polylog_series(ctx, s, z)
    if abs(z) >= 1.4 and ctx.isint(s):
        return (-1)**(s+1)*polylog_series(ctx, s, 1/z) + polylog_continuation(ctx, int(ctx.re(s)), z)
    if ctx.isint(s):
        return polylog_unitcircle(ctx, int(ctx.re(s)), z)
    return polylog_general(ctx, s, z)

@defun_wrapped
def clsin(ctx, s, z, pi=False):
    if ctx.isint(s) and s < 0 and int(s) % 2 == 1:
        return z*0
    if pi:
        a = ctx.expjpi(z)
    else:
        a = ctx.expj(z)
    if ctx._is_real_type(z) and ctx._is_real_type(s):
        return ctx.im(ctx.polylog(s,a))
    b = 1/a
    return (-0.5j)*(ctx.polylog(s,a) - ctx.polylog(s,b))

@defun_wrapped
def clcos(ctx, s, z, pi=False):
    if ctx.isint(s) and s < 0 and int(s) % 2 == 0:
        return z*0
    if pi:
        a = ctx.expjpi(z)
    else:
        a = ctx.expj(z)
    if ctx._is_real_type(z) and ctx._is_real_type(s):
        return ctx.re(ctx.polylog(s,a))
    b = 1/a
    return 0.5*(ctx.polylog(s,a) + ctx.polylog(s,b))

@defun
def altzeta(ctx, s, **kwargs):
    try:
        return ctx._altzeta(s, **kwargs)
    except NotImplementedError:
        return ctx._altzeta_generic(s)

@defun_wrapped
def _altzeta_generic(ctx, s):
    if s == 1:
        return ctx.ln2 + 0*s
    return -ctx.powm1(2, 1-s) * ctx.zeta(s)

@defun
def zeta(ctx, s, a=1, derivative=0, method=None, **kwargs):
    d = int(derivative)
    if a == 1 and not (d or method):
        try:
            return ctx._zeta(s, **kwargs)
        except NotImplementedError:
            pass
    s = ctx.convert(s)
    prec = ctx.prec
    method = kwargs.get('method')
    verbose = kwargs.get('verbose')
    if (not s) and (not derivative):
        return ctx.mpf(0.5) - ctx._convert_param(a)[0]
    if a == 1 and method != 'euler-maclaurin':
        im = abs(ctx._im(s))
        re = abs(ctx._re(s))
        #if (im < prec or method == 'borwein') and not derivative:
        #    try:
        #        if verbose:
        #            print "zeta: Attempting to use the Borwein algorithm"
        #        return ctx._zeta(s, **kwargs)
        #    except NotImplementedError:
        #        if verbose:
        #            print "zeta: Could not use the Borwein algorithm"
        #        pass
        if abs(im) > 500*prec and 10*re < prec and derivative <= 4 or \
            method == 'riemann-siegel':
            try:   #  py2.4 compatible try block
                try:
                    if verbose:
                        print("zeta: Attempting to use the Riemann-Siegel algorithm")
                    return ctx.rs_zeta(s, derivative, **kwargs)
                except NotImplementedError:
                    if verbose:
                        print("zeta: Could not use the Riemann-Siegel algorithm")
                    pass
            finally:
                ctx.prec = prec
    if s == 1:
        return ctx.inf
    abss = abs(s)
    if abss == ctx.inf:
        if ctx.re(s) == ctx.inf:
            if d == 0:
                return ctx.one
            return ctx.zero
        return s*0
    elif ctx.isnan(abss):
        return 1/s
    if ctx.re(s) > 2*ctx.prec and a == 1 and not derivative:
        return ctx.one + ctx.power(2, -s)
    return +ctx._hurwitz(s, a, d, **kwargs)

@defun
def _hurwitz(ctx, s, a=1, d=0, **kwargs):
    prec = ctx.prec
    verbose = kwargs.get('verbose')
    try:
        extraprec = 10
        ctx.prec += extraprec
        # We strongly want to special-case rational a
        a, atype = ctx._convert_param(a)
        if ctx.re(s) < 0:
            if verbose:
                print("zeta: Attempting reflection formula")
            try:
                return _hurwitz_reflection(ctx, s, a, d, atype)
            except NotImplementedError:
                pass
            if verbose:
                print("zeta: Reflection formula failed")
        if verbose:
            print("zeta: Using the Euler-Maclaurin algorithm")
        while 1:
            ctx.prec = prec + extraprec
            T1, T2 = _hurwitz_em(ctx, s, a, d, prec+10, verbose)
            cancellation = ctx.mag(T1) - ctx.mag(T1+T2)
            if verbose:
                print("Term 1:", T1)
                print("Term 2:", T2)
                print("Cancellation:", cancellation, "bits")
            if cancellation < extraprec:
                return T1 + T2
            else:
                extraprec = max(2*extraprec, min(cancellation + 5, 100*prec))
                if extraprec > kwargs.get('maxprec', 100*prec):
                    raise ctx.NoConvergence("zeta: too much cancellation")
    finally:
        ctx.prec = prec

def _hurwitz_reflection(ctx, s, a, d, atype):
    # TODO: implement for derivatives
    if d != 0:
        raise NotImplementedError
    res = ctx.re(s)
    negs = -s
    # Integer reflection formula
    if ctx.isnpint(s):
        n = int(res)
        if n <= 0:
            return ctx.bernpoly(1-n, a) / (n-1)
    if not (atype == 'Q' or atype == 'Z'):
        raise NotImplementedError
    t = 1-s
    # We now require a to be standardized
    v = 0
    shift = 0
    b = a
    while ctx.re(b) > 1:
        b -= 1
        v -= b**negs
        shift -= 1
    while ctx.re(b) <= 0:
        v += b**negs
        b += 1
        shift += 1
    # Rational reflection formula
    try:
        p, q = a._mpq_
    except:
        assert a == int(a)
        p = int(a)
        q = 1
    p += shift*q
    assert 1 <= p <= q
    g = ctx.fsum(ctx.cospi(t/2-2*k*b)*ctx._hurwitz(t,(k,q)) \
        for k in range(1,q+1))
    g *= 2*ctx.gamma(t)/(2*ctx.pi*q)**t
    v += g
    return v

def _hurwitz_em(ctx, s, a, d, prec, verbose):
    # May not be converted at this point
    a = ctx.convert(a)
    tol = -prec
    # Estimate number of terms for Euler-Maclaurin summation; could be improved
    M1 = 0
    M2 = prec // 3
    N = M2
    lsum = 0
    # This speeds up the recurrence for derivatives
    if ctx.isint(s):
        s = int(ctx._re(s))
    s1 = s-1
    while 1:
        # Truncated L-series
        l = ctx._zetasum(s, M1+a, M2-M1-1, [d])[0][0]
        #if d:
        #    l = ctx.fsum((-ctx.ln(n+a))**d * (n+a)**negs for n in range(M1,M2))
        #else:
        #    l = ctx.fsum((n+a)**negs for n in range(M1,M2))
        lsum += l
        M2a = M2+a
        logM2a = ctx.ln(M2a)
        logM2ad = logM2a**d
        logs = [logM2ad]
        logr = 1/logM2a
        rM2a = 1/M2a
        M2as = M2a**(-s)
        if d:
            tailsum = ctx.gammainc(d+1, s1*logM2a) / s1**(d+1)
        else:
            tailsum = 1/((s1)*(M2a)**s1)
        tailsum += 0.5 * logM2ad * M2as
        U = [1]
        r = M2as
        fact = 2
        for j in range(1, N+1):
            # TODO: the following could perhaps be tidied a bit
            j2 = 2*j
            if j == 1:
                upds = [1]
            else:
                upds = [j2-2, j2-1]
            for m in upds:
                D = min(m,d+1)
                if m <= d:
                    logs.append(logs[-1] * logr)
                Un = [0]*(D+1)
                for i in xrange(D): Un[i] = (1-m-s)*U[i]
                for i in xrange(1,D+1): Un[i] += (d-(i-1))*U[i-1]
                U = Un
                r *= rM2a
            t = ctx.fdot(U, logs) * r * ctx.bernoulli(j2)/(-fact)
            tailsum += t
            if ctx.mag(t) < tol:
                return lsum, (-1)**d * tailsum
            fact *= (j2+1)*(j2+2)
        if verbose:
            print("Sum range:", M1, M2, "term magnitude", ctx.mag(t), "tolerance", tol)
        M1, M2 = M2, M2*2
        if ctx.re(s) < 0:
            N += N//2



@defun
def _zetasum(ctx, s, a, n, derivatives=[0], reflect=False):
    """
    Returns [xd0,xd1,...,xdr], [yd0,yd1,...ydr] where

    xdk = D^k     ( 1/a^s     +  1/(a+1)^s      +  ...  +  1/(a+n)^s     )
    ydk = D^k conj( 1/a^(1-s) +  1/(a+1)^(1-s)  +  ...  +  1/(a+n)^(1-s) )

    D^k = kth derivative with respect to s, k ranges over the given list of
    derivatives (which should consist of either a single element
    or a range 0,1,...r). If reflect=False, the ydks are not computed.
    """
    #print "zetasum", s, a, n
    # don't use the fixed-point code if there are large exponentials
    if abs(ctx.re(s)) < 0.5 * ctx.prec:
        try:
            return ctx._zetasum_fast(s, a, n, derivatives, reflect)
        except NotImplementedError:
            pass
    negs = ctx.fneg(s, exact=True)
    have_derivatives = derivatives != [0]
    have_one_derivative = len(derivatives) == 1
    if not reflect:
        if not have_derivatives:
            return [ctx.fsum((a+k)**negs for k in xrange(n+1))], []
        if have_one_derivative:
            d = derivatives[0]
            x = ctx.fsum(ctx.ln(a+k)**d * (a+k)**negs for k in xrange(n+1))
            return [(-1)**d * x], []
    maxd = max(derivatives)
    if not have_one_derivative:
        derivatives = range(maxd+1)
    xs = [ctx.zero for d in derivatives]
    if reflect:
        ys = [ctx.zero for d in derivatives]
    else:
        ys = []
    for k in xrange(n+1):
        w = a + k
        xterm = w ** negs
        if reflect:
            yterm = ctx.conj(ctx.one / (w * xterm))
        if have_derivatives:
            logw = -ctx.ln(w)
            if have_one_derivative:
                logw = logw ** maxd
                xs[0] += xterm * logw
                if reflect:
                    ys[0] += yterm * logw
            else:
                t = ctx.one
                for d in derivatives:
                    xs[d] += xterm * t
                    if reflect:
                        ys[d] += yterm * t
                    t *= logw
        else:
            xs[0] += xterm
            if reflect:
                ys[0] += yterm
    return xs, ys

@defun
def dirichlet(ctx, s, chi=[1], derivative=0):
    s = ctx.convert(s)
    q = len(chi)
    d = int(derivative)
    if d > 2:
        raise NotImplementedError("arbitrary order derivatives")
    prec = ctx.prec
    try:
        ctx.prec += 10
        if s == 1:
            have_pole = True
            for x in chi:
                if x and x != 1:
                    have_pole = False
                    h = +ctx.eps
                    ctx.prec *= 2*(d+1)
                    s += h
            if have_pole:
                return +ctx.inf
        z = ctx.zero
        for p in range(1,q+1):
            if chi[p%q]:
                if d == 1:
                    z += chi[p%q] * (ctx.zeta(s, (p,q), 1) - \
                        ctx.zeta(s, (p,q))*ctx.log(q))
                else:
                    z += chi[p%q] * ctx.zeta(s, (p,q))
        z /= q**s
    finally:
        ctx.prec = prec
    return +z


def secondzeta_main_term(ctx, s, a, **kwargs):
    tol = ctx.eps
    f = lambda n: ctx.gammainc(0.5*s, a*gamm**2, regularized=True)*gamm**(-s)
    totsum = term = ctx.zero
    mg = ctx.inf
    n = 0
    while mg > tol:
        totsum += term
        n += 1
        gamm = ctx.im(ctx.zetazero_memoized(n))
        term = f(n)
        mg = abs(term)
    err = 0
    if kwargs.get("error"):
        sg = ctx.re(s)
        err = 0.5*ctx.pi**(-1)*max(1,sg)*a**(sg-0.5)*ctx.log(gamm/(2*ctx.pi))*\
             ctx.gammainc(-0.5, a*gamm**2)/abs(ctx.gamma(s/2))
        err = abs(err)
    return +totsum, err, n

def secondzeta_prime_term(ctx, s, a, **kwargs):
    tol = ctx.eps
    f = lambda n: ctx.gammainc(0.5*(1-s),0.25*ctx.log(n)**2 * a**(-1))*\
        ((0.5*ctx.log(n))**(s-1))*ctx.mangoldt(n)/ctx.sqrt(n)/\
        (2*ctx.gamma(0.5*s)*ctx.sqrt(ctx.pi))
    totsum = term = ctx.zero
    mg = ctx.inf
    n = 1
    while mg > tol or n < 9:
        totsum += term
        n += 1
        term = f(n)
        if term == 0:
            mg = ctx.inf
        else:
            mg = abs(term)
    if kwargs.get("error"):
        err = mg
    return +totsum, err, n

def secondzeta_exp_term(ctx, s, a):
    if ctx.isint(s) and ctx.re(s) <= 0:
        m = int(round(ctx.re(s)))
        if not m & 1:
            return ctx.mpf('-0.25')**(-m//2)
    tol = ctx.eps
    f = lambda n: (0.25*a)**n/((n+0.5*s)*ctx.fac(n))
    totsum = ctx.zero
    term = f(0)
    mg = ctx.inf
    n = 0
    while mg > tol:
        totsum += term
        n += 1
        term = f(n)
        mg = abs(term)
    v = a**(0.5*s)*totsum/ctx.gamma(0.5*s)
    return v

def secondzeta_singular_term(ctx, s, a, **kwargs):
    factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
    extraprec = ctx.mag(factor)
    ctx.prec += extraprec
    factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
    tol = ctx.eps
    f = lambda n: ctx.bernpoly(n,0.75)*(4*ctx.sqrt(a))**n*\
       ctx.gamma(0.5*n)/((s+n-1)*ctx.fac(n))
    totsum = ctx.zero
    mg1 = ctx.inf
    n = 1
    term = f(n)
    mg2 = abs(term)
    while mg2 > tol and mg2 <= mg1:
        totsum += term
        n += 1
        term = f(n)
        totsum += term
        n +=1
        term = f(n)
        mg1 = mg2
        mg2 = abs(term)
    totsum += term
    pole = -2*(s-1)**(-2)+(ctx.euler+ctx.log(16*ctx.pi**2*a))*(s-1)**(-1)
    st = factor*(pole+totsum)
    err = 0
    if kwargs.get("error"):
        if not ((mg2 > tol) and (mg2 <= mg1)):
            if mg2 <= tol:
                err = ctx.mpf(10)**int(ctx.log(abs(factor*tol),10))
            if mg2 > mg1:
                err = ctx.mpf(10)**int(ctx.log(abs(factor*mg1),10))
        err = max(err, ctx.eps*1.)
    ctx.prec -= extraprec
    return +st, err

@defun
def secondzeta(ctx, s, a = 0.015, **kwargs):
    r"""
    Evaluates the secondary zeta function `Z(s)`, defined for
    `\mathrm{Re}(s)>1` by

    .. math ::

        Z(s) = \sum_{n=1}^{\infty} \frac{1}{\tau_n^s}

    where `\frac12+i\tau_n` runs through the zeros of `\zeta(s)` with
    imaginary part positive.

    `Z(s)` extends to a meromorphic function on `\mathbb{C}`  with a
    double pole at `s=1` and  simple poles at the points `-2n` for
    `n=0`,  1, 2, ...

    **Examples**

        >>> from mpmath import *
        >>> mp.pretty = True; mp.dps = 15
        >>> secondzeta(2)
        0.023104993115419
        >>> xi = lambda s: 0.5*s*(s-1)*pi**(-0.5*s)*gamma(0.5*s)*zeta(s)
        >>> Xi = lambda t: xi(0.5+t*j)
        >>> chop(-0.5*diff(Xi,0,n=2)/Xi(0))
        0.023104993115419

    We may ask for an approximate error value::

        >>> secondzeta(0.5+100j, error=True)
        ((-0.216272011276718 - 0.844952708937228j), 2.22044604925031e-16)

    The function has poles at the negative odd integers,
    and dyadic rational values at the negative even integers::

        >>> mp.dps = 30
        >>> secondzeta(-8)
        -0.67236328125
        >>> secondzeta(-7)
        +inf

    **Implementation notes**

    The function is computed as sum of four terms `Z(s)=A(s)-P(s)+E(s)-S(s)`
    respectively main, prime, exponential and singular terms.
    The main term `A(s)` is computed from the zeros of zeta.
    The prime term depends on the von Mangoldt function.
    The singular term is responsible for the poles of the function.

    The four terms depends on a small parameter `a`. We may change the
    value of `a`. Theoretically this has no effect on the sum of the four
    terms, but in practice may be important.

    A smaller value of the parameter `a` makes `A(s)` depend on
    a smaller number of zeros of zeta, but `P(s)`  uses more values of
    von Mangoldt function.

    We may also add a verbose option to obtain data about the
    values of the four terms.

        >>> mp.dps = 10
        >>> secondzeta(0.5 + 40j, error=True, verbose=True)
        main term = (-30190318549.138656312556 - 13964804384.624622876523j)
            computed using 19 zeros of zeta
        prime term = (132717176.89212754625045 + 188980555.17563978290601j)
            computed using 9 values of the von Mangoldt function
        exponential term = (542447428666.07179812536 + 362434922978.80192435203j)
        singular term = (512124392939.98154322355 + 348281138038.65531023921j)
        ((0.059471043 + 0.3463514534j), 1.455191523e-11)

        >>> secondzeta(0.5 + 40j, a=0.04, error=True, verbose=True)
        main term = (-151962888.19606243907725 - 217930683.90210294051982j)
            computed using 9 zeros of zeta
        prime term = (2476659342.3038722372461 + 28711581821.921627163136j)
            computed using 37 values of the von Mangoldt function
        exponential term = (178506047114.7838188264 + 819674143244.45677330576j)
        singular term = (175877424884.22441310708 + 790744630738.28669174871j)
        ((0.059471043 + 0.3463514534j), 1.455191523e-11)

    Notice the great cancellation between the four terms. Changing `a`, the
    four terms are very different numbers but the cancellation gives
    the good value of Z(s).

    **References**

    A. Voros, Zeta functions for the Riemann zeros, Ann. Institute Fourier,
    53, (2003) 665--699.

    A. Voros, Zeta functions over Zeros of Zeta Functions, Lecture Notes
    of the Unione Matematica Italiana, Springer, 2009.
    """
    s = ctx.convert(s)
    a = ctx.convert(a)
    tol = ctx.eps
    if ctx.isint(s) and ctx.re(s) <= 1:
        if abs(s-1) < tol*1000:
            return ctx.inf
        m = int(round(ctx.re(s)))
        if m & 1:
            return ctx.inf
        else:
            return ((-1)**(-m//2)*\
                   ctx.fraction(8-ctx.eulernum(-m,exact=True),2**(-m+3)))
    prec = ctx.prec
    try:
        t3 = secondzeta_exp_term(ctx, s, a)
        extraprec = max(ctx.mag(t3),0)
        ctx.prec += extraprec + 3
        t1, r1, gt = secondzeta_main_term(ctx,s,a,error='True', verbose='True')
        t2, r2, pt = secondzeta_prime_term(ctx,s,a,error='True', verbose='True')
        t4, r4 = secondzeta_singular_term(ctx,s,a,error='True')
        t3 = secondzeta_exp_term(ctx, s, a)
        err = r1+r2+r4
        t = t1-t2+t3-t4
        if kwargs.get("verbose"):
            print('main term =', t1)
            print('    computed using', gt, 'zeros of zeta')
            print('prime term =', t2)
            print('    computed using', pt, 'values of the von Mangoldt function')
            print('exponential term =', t3)
            print('singular term =', t4)
    finally:
        ctx.prec = prec
    if kwargs.get("error"):
        w = max(ctx.mag(abs(t)),0)
        err = max(err*2**w, ctx.eps*1.*2**w)
        return +t, err
    return +t


@defun_wrapped
def lerchphi(ctx, z, s, a):
    r"""
    Gives the Lerch transcendent, defined for `|z| < 1` and
    `\Re{a} > 0` by

    .. math ::

        \Phi(z,s,a) = \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s}

    and generally by the recurrence `\Phi(z,s,a) = z \Phi(z,s,a+1) + a^{-s}`
    along with the integral representation valid for `\Re{a} > 0`

    .. math ::

        \Phi(z,s,a) = \frac{1}{2 a^s} +
                \int_0^{\infty} \frac{z^t}{(a+t)^s} dt -
                2 \int_0^{\infty} \frac{\sin(t \log z - s
                    \operatorname{arctan}(t/a)}{(a^2 + t^2)^{s/2}
                    (e^{2 \pi t}-1)} dt.

    The Lerch transcendent generalizes the Hurwitz zeta function :func:`zeta`
    (`z = 1`) and the polylogarithm :func:`polylog` (`a = 1`).

    **Examples**

    Several evaluations in terms of simpler functions::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> lerchphi(-1,2,0.5); 4*catalan
        3.663862376708876060218414
        3.663862376708876060218414
        >>> diff(lerchphi, (-1,-2,1), (0,1,0)); 7*zeta(3)/(4*pi**2)
        0.2131391994087528954617607
        0.2131391994087528954617607
        >>> lerchphi(-4,1,1); log(5)/4
        0.4023594781085250936501898
        0.4023594781085250936501898
        >>> lerchphi(-3+2j,1,0.5); 2*atanh(sqrt(-3+2j))/sqrt(-3+2j)
        (1.142423447120257137774002 + 0.2118232380980201350495795j)
        (1.142423447120257137774002 + 0.2118232380980201350495795j)

    Evaluation works for complex arguments and `|z| \ge 1`::

        >>> lerchphi(1+2j, 3-j, 4+2j)
        (0.002025009957009908600539469 + 0.003327897536813558807438089j)
        >>> lerchphi(-2,2,-2.5)
        -12.28676272353094275265944
        >>> lerchphi(10,10,10)
        (-4.462130727102185701817349e-11 - 1.575172198981096218823481e-12j)
        >>> lerchphi(10,10,-10.5)
        (112658784011940.5605789002 - 498113185.5756221777743631j)

    Some degenerate cases::

        >>> lerchphi(0,1,2)
        0.5
        >>> lerchphi(0,1,-2)
        -0.5

    Reduction to simpler functions::

        >>> lerchphi(1, 4.25+1j, 1)
        (1.044674457556746668033975 - 0.04674508654012658932271226j)
        >>> zeta(4.25+1j)
        (1.044674457556746668033975 - 0.04674508654012658932271226j)
        >>> lerchphi(1 - 0.5**10, 4.25+1j, 1)
        (1.044629338021507546737197 - 0.04667768813963388181708101j)
        >>> lerchphi(3, 4, 1)
        (1.249503297023366545192592 - 0.2314252413375664776474462j)
        >>> polylog(4, 3) / 3
        (1.249503297023366545192592 - 0.2314252413375664776474462j)
        >>> lerchphi(3, 4, 1 - 0.5**10)
        (1.253978063946663945672674 - 0.2316736622836535468765376j)

    **References**

    1. [DLMF]_ section 25.14

    """
    if z == 0:
        return a ** (-s)
    # Faster, but these cases are useful for testing right now
    if z == 1:
        return ctx.zeta(s, a)
    if a == 1:
        return ctx.polylog(s, z) / z
    if ctx.re(a) < 1:
        if ctx.isnpint(a):
            raise ValueError("Lerch transcendent complex infinity")
        m = int(ctx.ceil(1-ctx.re(a)))
        v = ctx.zero
        zpow = ctx.one
        for n in xrange(m):
            v += zpow / (a+n)**s
            zpow *= z
        return zpow * ctx.lerchphi(z,s, a+m) + v
    g = ctx.ln(z)
    v = 1/(2*a**s) + ctx.gammainc(1-s, -a*g) * (-g)**(s-1) / z**a
    h = s / 2
    r = 2*ctx.pi
    f = lambda t: ctx.sin(s*ctx.atan(t/a)-t*g) / \
        ((a**2+t**2)**h * ctx.expm1(r*t))
    v += 2*ctx.quad(f, [0, ctx.inf])
    if not ctx.im(z) and not ctx.im(s) and not ctx.im(a) and ctx.re(z) < 1:
        v = ctx.chop(v)
    return v