Spaces:
Running
Running
File size: 6,925 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
"""Functions for computing clustering of pairs
"""
import itertools
import networkx as nx
__all__ = [
"clustering",
"average_clustering",
"latapy_clustering",
"robins_alexander_clustering",
]
def cc_dot(nu, nv):
return len(nu & nv) / len(nu | nv)
def cc_max(nu, nv):
return len(nu & nv) / max(len(nu), len(nv))
def cc_min(nu, nv):
return len(nu & nv) / min(len(nu), len(nv))
modes = {"dot": cc_dot, "min": cc_min, "max": cc_max}
@nx._dispatch
def latapy_clustering(G, nodes=None, mode="dot"):
r"""Compute a bipartite clustering coefficient for nodes.
The bipartite clustering coefficient is a measure of local density
of connections defined as [1]_:
.. math::
c_u = \frac{\sum_{v \in N(N(u))} c_{uv} }{|N(N(u))|}
where `N(N(u))` are the second order neighbors of `u` in `G` excluding `u`,
and `c_{uv}` is the pairwise clustering coefficient between nodes
`u` and `v`.
The mode selects the function for `c_{uv}` which can be:
`dot`:
.. math::
c_{uv}=\frac{|N(u)\cap N(v)|}{|N(u) \cup N(v)|}
`min`:
.. math::
c_{uv}=\frac{|N(u)\cap N(v)|}{min(|N(u)|,|N(v)|)}
`max`:
.. math::
c_{uv}=\frac{|N(u)\cap N(v)|}{max(|N(u)|,|N(v)|)}
Parameters
----------
G : graph
A bipartite graph
nodes : list or iterable (optional)
Compute bipartite clustering for these nodes. The default
is all nodes in G.
mode : string
The pairwise bipartite clustering method to be used in the computation.
It must be "dot", "max", or "min".
Returns
-------
clustering : dictionary
A dictionary keyed by node with the clustering coefficient value.
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G, mode="min")
>>> c[0]
1.0
See Also
--------
robins_alexander_clustering
average_clustering
networkx.algorithms.cluster.square_clustering
References
----------
.. [1] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31--48.
"""
if not nx.algorithms.bipartite.is_bipartite(G):
raise nx.NetworkXError("Graph is not bipartite")
try:
cc_func = modes[mode]
except KeyError as err:
raise nx.NetworkXError(
"Mode for bipartite clustering must be: dot, min or max"
) from err
if nodes is None:
nodes = G
ccs = {}
for v in nodes:
cc = 0.0
nbrs2 = {u for nbr in G[v] for u in G[nbr]} - {v}
for u in nbrs2:
cc += cc_func(set(G[u]), set(G[v]))
if cc > 0.0: # len(nbrs2)>0
cc /= len(nbrs2)
ccs[v] = cc
return ccs
clustering = latapy_clustering
@nx._dispatch(name="bipartite_average_clustering")
def average_clustering(G, nodes=None, mode="dot"):
r"""Compute the average bipartite clustering coefficient.
A clustering coefficient for the whole graph is the average,
.. math::
C = \frac{1}{n}\sum_{v \in G} c_v,
where `n` is the number of nodes in `G`.
Similar measures for the two bipartite sets can be defined [1]_
.. math::
C_X = \frac{1}{|X|}\sum_{v \in X} c_v,
where `X` is a bipartite set of `G`.
Parameters
----------
G : graph
a bipartite graph
nodes : list or iterable, optional
A container of nodes to use in computing the average.
The nodes should be either the entire graph (the default) or one of the
bipartite sets.
mode : string
The pairwise bipartite clustering method.
It must be "dot", "max", or "min"
Returns
-------
clustering : float
The average bipartite clustering for the given set of nodes or the
entire graph if no nodes are specified.
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.star_graph(3) # star graphs are bipartite
>>> bipartite.average_clustering(G)
0.75
>>> X, Y = bipartite.sets(G)
>>> bipartite.average_clustering(G, X)
0.0
>>> bipartite.average_clustering(G, Y)
1.0
See Also
--------
clustering
Notes
-----
The container of nodes passed to this function must contain all of the nodes
in one of the bipartite sets ("top" or "bottom") in order to compute
the correct average bipartite clustering coefficients.
See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
for further details on how bipartite graphs are handled in NetworkX.
References
----------
.. [1] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31--48.
"""
if nodes is None:
nodes = G
ccs = latapy_clustering(G, nodes=nodes, mode=mode)
return sum(ccs[v] for v in nodes) / len(nodes)
@nx._dispatch
def robins_alexander_clustering(G):
r"""Compute the bipartite clustering of G.
Robins and Alexander [1]_ defined bipartite clustering coefficient as
four times the number of four cycles `C_4` divided by the number of
three paths `L_3` in a bipartite graph:
.. math::
CC_4 = \frac{4 * C_4}{L_3}
Parameters
----------
G : graph
a bipartite graph
Returns
-------
clustering : float
The Robins and Alexander bipartite clustering for the input graph.
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.davis_southern_women_graph()
>>> print(round(bipartite.robins_alexander_clustering(G), 3))
0.468
See Also
--------
latapy_clustering
networkx.algorithms.cluster.square_clustering
References
----------
.. [1] Robins, G. and M. Alexander (2004). Small worlds among interlocking
directors: Network structure and distance in bipartite graphs.
Computational & Mathematical Organization Theory 10(1), 69–94.
"""
if G.order() < 4 or G.size() < 3:
return 0
L_3 = _threepaths(G)
if L_3 == 0:
return 0
C_4 = _four_cycles(G)
return (4.0 * C_4) / L_3
def _four_cycles(G):
cycles = 0
for v in G:
for u, w in itertools.combinations(G[v], 2):
cycles += len((set(G[u]) & set(G[w])) - {v})
return cycles / 4
def _threepaths(G):
paths = 0
for v in G:
for u in G[v]:
for w in set(G[u]) - {v}:
paths += len(set(G[w]) - {v, u})
# Divide by two because we count each three path twice
# one for each possible starting point
return paths / 2
|