File size: 6,925 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""Functions for computing clustering of pairs

"""

import itertools

import networkx as nx

__all__ = [
    "clustering",
    "average_clustering",
    "latapy_clustering",
    "robins_alexander_clustering",
]


def cc_dot(nu, nv):
    return len(nu & nv) / len(nu | nv)


def cc_max(nu, nv):
    return len(nu & nv) / max(len(nu), len(nv))


def cc_min(nu, nv):
    return len(nu & nv) / min(len(nu), len(nv))


modes = {"dot": cc_dot, "min": cc_min, "max": cc_max}


@nx._dispatch
def latapy_clustering(G, nodes=None, mode="dot"):
    r"""Compute a bipartite clustering coefficient for nodes.

    The bipartite clustering coefficient is a measure of local density
    of connections defined as [1]_:

    .. math::

       c_u = \frac{\sum_{v \in N(N(u))} c_{uv} }{|N(N(u))|}

    where `N(N(u))` are the second order neighbors of `u` in `G` excluding `u`,
    and `c_{uv}` is the pairwise clustering coefficient between nodes
    `u` and `v`.

    The mode selects the function for `c_{uv}` which can be:

    `dot`:

    .. math::

       c_{uv}=\frac{|N(u)\cap N(v)|}{|N(u) \cup N(v)|}

    `min`:

    .. math::

       c_{uv}=\frac{|N(u)\cap N(v)|}{min(|N(u)|,|N(v)|)}

    `max`:

    .. math::

       c_{uv}=\frac{|N(u)\cap N(v)|}{max(|N(u)|,|N(v)|)}


    Parameters
    ----------
    G : graph
        A bipartite graph

    nodes : list or iterable (optional)
        Compute bipartite clustering for these nodes. The default
        is all nodes in G.

    mode : string
        The pairwise bipartite clustering method to be used in the computation.
        It must be "dot", "max", or "min".

    Returns
    -------
    clustering : dictionary
        A dictionary keyed by node with the clustering coefficient value.


    Examples
    --------
    >>> from networkx.algorithms import bipartite
    >>> G = nx.path_graph(4)  # path graphs are bipartite
    >>> c = bipartite.clustering(G)
    >>> c[0]
    0.5
    >>> c = bipartite.clustering(G, mode="min")
    >>> c[0]
    1.0

    See Also
    --------
    robins_alexander_clustering
    average_clustering
    networkx.algorithms.cluster.square_clustering

    References
    ----------
    .. [1] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
       Basic notions for the analysis of large two-mode networks.
       Social Networks 30(1), 31--48.
    """
    if not nx.algorithms.bipartite.is_bipartite(G):
        raise nx.NetworkXError("Graph is not bipartite")

    try:
        cc_func = modes[mode]
    except KeyError as err:
        raise nx.NetworkXError(
            "Mode for bipartite clustering must be: dot, min or max"
        ) from err

    if nodes is None:
        nodes = G
    ccs = {}
    for v in nodes:
        cc = 0.0
        nbrs2 = {u for nbr in G[v] for u in G[nbr]} - {v}
        for u in nbrs2:
            cc += cc_func(set(G[u]), set(G[v]))
        if cc > 0.0:  # len(nbrs2)>0
            cc /= len(nbrs2)
        ccs[v] = cc
    return ccs


clustering = latapy_clustering


@nx._dispatch(name="bipartite_average_clustering")
def average_clustering(G, nodes=None, mode="dot"):
    r"""Compute the average bipartite clustering coefficient.

    A clustering coefficient for the whole graph is the average,

    .. math::

       C = \frac{1}{n}\sum_{v \in G} c_v,

    where `n` is the number of nodes in `G`.

    Similar measures for the two bipartite sets can be defined [1]_

    .. math::

       C_X = \frac{1}{|X|}\sum_{v \in X} c_v,

    where `X` is a bipartite set of `G`.

    Parameters
    ----------
    G : graph
        a bipartite graph

    nodes : list or iterable, optional
        A container of nodes to use in computing the average.
        The nodes should be either the entire graph (the default) or one of the
        bipartite sets.

    mode : string
        The pairwise bipartite clustering method.
        It must be "dot", "max", or "min"

    Returns
    -------
    clustering : float
       The average bipartite clustering for the given set of nodes or the
       entire graph if no nodes are specified.

    Examples
    --------
    >>> from networkx.algorithms import bipartite
    >>> G = nx.star_graph(3)  # star graphs are bipartite
    >>> bipartite.average_clustering(G)
    0.75
    >>> X, Y = bipartite.sets(G)
    >>> bipartite.average_clustering(G, X)
    0.0
    >>> bipartite.average_clustering(G, Y)
    1.0

    See Also
    --------
    clustering

    Notes
    -----
    The container of nodes passed to this function must contain all of the nodes
    in one of the bipartite sets ("top" or "bottom") in order to compute
    the correct average bipartite clustering coefficients.
    See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
    for further details on how bipartite graphs are handled in NetworkX.


    References
    ----------
    .. [1] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
        Basic notions for the analysis of large two-mode networks.
        Social Networks 30(1), 31--48.
    """
    if nodes is None:
        nodes = G
    ccs = latapy_clustering(G, nodes=nodes, mode=mode)
    return sum(ccs[v] for v in nodes) / len(nodes)


@nx._dispatch
def robins_alexander_clustering(G):
    r"""Compute the bipartite clustering of G.

    Robins and Alexander [1]_ defined bipartite clustering coefficient as
    four times the number of four cycles `C_4` divided by the number of
    three paths `L_3` in a bipartite graph:

    .. math::

       CC_4 = \frac{4 * C_4}{L_3}

    Parameters
    ----------
    G : graph
        a bipartite graph

    Returns
    -------
    clustering : float
       The Robins and Alexander bipartite clustering for the input graph.

    Examples
    --------
    >>> from networkx.algorithms import bipartite
    >>> G = nx.davis_southern_women_graph()
    >>> print(round(bipartite.robins_alexander_clustering(G), 3))
    0.468

    See Also
    --------
    latapy_clustering
    networkx.algorithms.cluster.square_clustering

    References
    ----------
    .. [1] Robins, G. and M. Alexander (2004). Small worlds among interlocking
           directors: Network structure and distance in bipartite graphs.
           Computational & Mathematical Organization Theory 10(1), 69–94.

    """
    if G.order() < 4 or G.size() < 3:
        return 0
    L_3 = _threepaths(G)
    if L_3 == 0:
        return 0
    C_4 = _four_cycles(G)
    return (4.0 * C_4) / L_3


def _four_cycles(G):
    cycles = 0
    for v in G:
        for u, w in itertools.combinations(G[v], 2):
            cycles += len((set(G[u]) & set(G[w])) - {v})
    return cycles / 4


def _threepaths(G):
    paths = 0
    for v in G:
        for u in G[v]:
            for w in set(G[u]) - {v}:
                paths += len(set(G[w]) - {v, u})
    # Divide by two because we count each three path twice
    # one for each possible starting point
    return paths / 2