Spaces:
Running
Running
File size: 27,866 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
"""Group centrality measures."""
from copy import deepcopy
import networkx as nx
from networkx.algorithms.centrality.betweenness import (
_accumulate_endpoints,
_single_source_dijkstra_path_basic,
_single_source_shortest_path_basic,
)
from networkx.utils.decorators import not_implemented_for
__all__ = [
"group_betweenness_centrality",
"group_closeness_centrality",
"group_degree_centrality",
"group_in_degree_centrality",
"group_out_degree_centrality",
"prominent_group",
]
@nx._dispatch(edge_attrs="weight")
def group_betweenness_centrality(G, C, normalized=True, weight=None, endpoints=False):
r"""Compute the group betweenness centrality for a group of nodes.
Group betweenness centrality of a group of nodes $C$ is the sum of the
fraction of all-pairs shortest paths that pass through any vertex in $C$
.. math::
c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
shortest $(s, t)$-paths, and $\sigma(s, t|C)$ is the number of
those paths passing through some node in group $C$. Note that
$(s, t)$ are not members of the group ($V-C$ is the set of nodes
in $V$ that are not in $C$).
Parameters
----------
G : graph
A NetworkX graph.
C : list or set or list of lists or list of sets
A group or a list of groups containing nodes which belong to G, for which group betweenness
centrality is to be calculated.
normalized : bool, optional (default=True)
If True, group betweenness is normalized by `1/((|V|-|C|)(|V|-|C|-1))`
where `|V|` is the number of nodes in G and `|C|` is the number of nodes in C.
weight : None or string, optional (default=None)
If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.
The weight of an edge is treated as the length or distance between the two sides.
endpoints : bool, optional (default=False)
If True include the endpoints in the shortest path counts.
Raises
------
NodeNotFound
If node(s) in C are not present in G.
Returns
-------
betweenness : list of floats or float
If C is a single group then return a float. If C is a list with
several groups then return a list of group betweenness centralities.
See Also
--------
betweenness_centrality
Notes
-----
Group betweenness centrality is described in [1]_ and its importance discussed in [3]_.
The initial implementation of the algorithm is mentioned in [2]_. This function uses
an improved algorithm presented in [4]_.
The number of nodes in the group must be a maximum of n - 2 where `n`
is the total number of nodes in the graph.
For weighted graphs the edge weights must be greater than zero.
Zero edge weights can produce an infinite number of equal length
paths between pairs of nodes.
The total number of paths between source and target is counted
differently for directed and undirected graphs. Directed paths
between "u" and "v" are counted as two possible paths (one each
direction) while undirected paths between "u" and "v" are counted
as one path. Said another way, the sum in the expression above is
over all ``s != t`` for directed graphs and for ``s < t`` for undirected graphs.
References
----------
.. [1] M G Everett and S P Borgatti:
The Centrality of Groups and Classes.
Journal of Mathematical Sociology. 23(3): 181-201. 1999.
http://www.analytictech.com/borgatti/group_centrality.htm
.. [2] Ulrik Brandes:
On Variants of Shortest-Path Betweenness
Centrality and their Generic Computation.
Social Networks 30(2):136-145, 2008.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.9610&rep=rep1&type=pdf
.. [3] Sourav Medya et. al.:
Group Centrality Maximization via Network Design.
SIAM International Conference on Data Mining, SDM 2018, 126–134.
https://sites.cs.ucsb.edu/~arlei/pubs/sdm18.pdf
.. [4] Rami Puzis, Yuval Elovici, and Shlomi Dolev.
"Fast algorithm for successive computation of group betweenness centrality."
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.76.056709
"""
GBC = [] # initialize betweenness
list_of_groups = True
# check weather C contains one or many groups
if any(el in G for el in C):
C = [C]
list_of_groups = False
set_v = {node for group in C for node in group}
if set_v - G.nodes: # element(s) of C not in G
raise nx.NodeNotFound(f"The node(s) {set_v - G.nodes} are in C but not in G.")
# pre-processing
PB, sigma, D = _group_preprocessing(G, set_v, weight)
# the algorithm for each group
for group in C:
group = set(group) # set of nodes in group
# initialize the matrices of the sigma and the PB
GBC_group = 0
sigma_m = deepcopy(sigma)
PB_m = deepcopy(PB)
sigma_m_v = deepcopy(sigma_m)
PB_m_v = deepcopy(PB_m)
for v in group:
GBC_group += PB_m[v][v]
for x in group:
for y in group:
dxvy = 0
dxyv = 0
dvxy = 0
if not (
sigma_m[x][y] == 0 or sigma_m[x][v] == 0 or sigma_m[v][y] == 0
):
if D[x][v] == D[x][y] + D[y][v]:
dxyv = sigma_m[x][y] * sigma_m[y][v] / sigma_m[x][v]
if D[x][y] == D[x][v] + D[v][y]:
dxvy = sigma_m[x][v] * sigma_m[v][y] / sigma_m[x][y]
if D[v][y] == D[v][x] + D[x][y]:
dvxy = sigma_m[v][x] * sigma[x][y] / sigma[v][y]
sigma_m_v[x][y] = sigma_m[x][y] * (1 - dxvy)
PB_m_v[x][y] = PB_m[x][y] - PB_m[x][y] * dxvy
if y != v:
PB_m_v[x][y] -= PB_m[x][v] * dxyv
if x != v:
PB_m_v[x][y] -= PB_m[v][y] * dvxy
sigma_m, sigma_m_v = sigma_m_v, sigma_m
PB_m, PB_m_v = PB_m_v, PB_m
# endpoints
v, c = len(G), len(group)
if not endpoints:
scale = 0
# if the graph is connected then subtract the endpoints from
# the count for all the nodes in the graph. else count how many
# nodes are connected to the group's nodes and subtract that.
if nx.is_directed(G):
if nx.is_strongly_connected(G):
scale = c * (2 * v - c - 1)
elif nx.is_connected(G):
scale = c * (2 * v - c - 1)
if scale == 0:
for group_node1 in group:
for node in D[group_node1]:
if node != group_node1:
if node in group:
scale += 1
else:
scale += 2
GBC_group -= scale
# normalized
if normalized:
scale = 1 / ((v - c) * (v - c - 1))
GBC_group *= scale
# If undirected than count only the undirected edges
elif not G.is_directed():
GBC_group /= 2
GBC.append(GBC_group)
if list_of_groups:
return GBC
return GBC[0]
def _group_preprocessing(G, set_v, weight):
sigma = {}
delta = {}
D = {}
betweenness = dict.fromkeys(G, 0)
for s in G:
if weight is None: # use BFS
S, P, sigma[s], D[s] = _single_source_shortest_path_basic(G, s)
else: # use Dijkstra's algorithm
S, P, sigma[s], D[s] = _single_source_dijkstra_path_basic(G, s, weight)
betweenness, delta[s] = _accumulate_endpoints(betweenness, S, P, sigma[s], s)
for i in delta[s]: # add the paths from s to i and rescale sigma
if s != i:
delta[s][i] += 1
if weight is not None:
sigma[s][i] = sigma[s][i] / 2
# building the path betweenness matrix only for nodes that appear in the group
PB = dict.fromkeys(G)
for group_node1 in set_v:
PB[group_node1] = dict.fromkeys(G, 0.0)
for group_node2 in set_v:
if group_node2 not in D[group_node1]:
continue
for node in G:
# if node is connected to the two group nodes than continue
if group_node2 in D[node] and group_node1 in D[node]:
if (
D[node][group_node2]
== D[node][group_node1] + D[group_node1][group_node2]
):
PB[group_node1][group_node2] += (
delta[node][group_node2]
* sigma[node][group_node1]
* sigma[group_node1][group_node2]
/ sigma[node][group_node2]
)
return PB, sigma, D
@nx._dispatch(edge_attrs="weight")
def prominent_group(
G, k, weight=None, C=None, endpoints=False, normalized=True, greedy=False
):
r"""Find the prominent group of size $k$ in graph $G$. The prominence of the
group is evaluated by the group betweenness centrality.
Group betweenness centrality of a group of nodes $C$ is the sum of the
fraction of all-pairs shortest paths that pass through any vertex in $C$
.. math::
c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
shortest $(s, t)$-paths, and $\sigma(s, t|C)$ is the number of
those paths passing through some node in group $C$. Note that
$(s, t)$ are not members of the group ($V-C$ is the set of nodes
in $V$ that are not in $C$).
Parameters
----------
G : graph
A NetworkX graph.
k : int
The number of nodes in the group.
normalized : bool, optional (default=True)
If True, group betweenness is normalized by ``1/((|V|-|C|)(|V|-|C|-1))``
where ``|V|`` is the number of nodes in G and ``|C|`` is the number of
nodes in C.
weight : None or string, optional (default=None)
If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.
The weight of an edge is treated as the length or distance between the two sides.
endpoints : bool, optional (default=False)
If True include the endpoints in the shortest path counts.
C : list or set, optional (default=None)
list of nodes which won't be candidates of the prominent group.
greedy : bool, optional (default=False)
Using a naive greedy algorithm in order to find non-optimal prominent
group. For scale free networks the results are negligibly below the optimal
results.
Raises
------
NodeNotFound
If node(s) in C are not present in G.
Returns
-------
max_GBC : float
The group betweenness centrality of the prominent group.
max_group : list
The list of nodes in the prominent group.
See Also
--------
betweenness_centrality, group_betweenness_centrality
Notes
-----
Group betweenness centrality is described in [1]_ and its importance discussed in [3]_.
The algorithm is described in [2]_ and is based on techniques mentioned in [4]_.
The number of nodes in the group must be a maximum of ``n - 2`` where ``n``
is the total number of nodes in the graph.
For weighted graphs the edge weights must be greater than zero.
Zero edge weights can produce an infinite number of equal length
paths between pairs of nodes.
The total number of paths between source and target is counted
differently for directed and undirected graphs. Directed paths
between "u" and "v" are counted as two possible paths (one each
direction) while undirected paths between "u" and "v" are counted
as one path. Said another way, the sum in the expression above is
over all ``s != t`` for directed graphs and for ``s < t`` for undirected graphs.
References
----------
.. [1] M G Everett and S P Borgatti:
The Centrality of Groups and Classes.
Journal of Mathematical Sociology. 23(3): 181-201. 1999.
http://www.analytictech.com/borgatti/group_centrality.htm
.. [2] Rami Puzis, Yuval Elovici, and Shlomi Dolev:
"Finding the Most Prominent Group in Complex Networks"
AI communications 20(4): 287-296, 2007.
https://www.researchgate.net/profile/Rami_Puzis2/publication/220308855
.. [3] Sourav Medya et. al.:
Group Centrality Maximization via Network Design.
SIAM International Conference on Data Mining, SDM 2018, 126–134.
https://sites.cs.ucsb.edu/~arlei/pubs/sdm18.pdf
.. [4] Rami Puzis, Yuval Elovici, and Shlomi Dolev.
"Fast algorithm for successive computation of group betweenness centrality."
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.76.056709
"""
import numpy as np
import pandas as pd
if C is not None:
C = set(C)
if C - G.nodes: # element(s) of C not in G
raise nx.NodeNotFound(f"The node(s) {C - G.nodes} are in C but not in G.")
nodes = list(G.nodes - C)
else:
nodes = list(G.nodes)
DF_tree = nx.Graph()
PB, sigma, D = _group_preprocessing(G, nodes, weight)
betweenness = pd.DataFrame.from_dict(PB)
if C is not None:
for node in C:
# remove from the betweenness all the nodes not part of the group
betweenness.drop(index=node, inplace=True)
betweenness.drop(columns=node, inplace=True)
CL = [node for _, node in sorted(zip(np.diag(betweenness), nodes), reverse=True)]
max_GBC = 0
max_group = []
DF_tree.add_node(
1,
CL=CL,
betweenness=betweenness,
GBC=0,
GM=[],
sigma=sigma,
cont=dict(zip(nodes, np.diag(betweenness))),
)
# the algorithm
DF_tree.nodes[1]["heu"] = 0
for i in range(k):
DF_tree.nodes[1]["heu"] += DF_tree.nodes[1]["cont"][DF_tree.nodes[1]["CL"][i]]
max_GBC, DF_tree, max_group = _dfbnb(
G, k, DF_tree, max_GBC, 1, D, max_group, nodes, greedy
)
v = len(G)
if not endpoints:
scale = 0
# if the graph is connected then subtract the endpoints from
# the count for all the nodes in the graph. else count how many
# nodes are connected to the group's nodes and subtract that.
if nx.is_directed(G):
if nx.is_strongly_connected(G):
scale = k * (2 * v - k - 1)
elif nx.is_connected(G):
scale = k * (2 * v - k - 1)
if scale == 0:
for group_node1 in max_group:
for node in D[group_node1]:
if node != group_node1:
if node in max_group:
scale += 1
else:
scale += 2
max_GBC -= scale
# normalized
if normalized:
scale = 1 / ((v - k) * (v - k - 1))
max_GBC *= scale
# If undirected then count only the undirected edges
elif not G.is_directed():
max_GBC /= 2
max_GBC = float("%.2f" % max_GBC)
return max_GBC, max_group
def _dfbnb(G, k, DF_tree, max_GBC, root, D, max_group, nodes, greedy):
# stopping condition - if we found a group of size k and with higher GBC then prune
if len(DF_tree.nodes[root]["GM"]) == k and DF_tree.nodes[root]["GBC"] > max_GBC:
return DF_tree.nodes[root]["GBC"], DF_tree, DF_tree.nodes[root]["GM"]
# stopping condition - if the size of group members equal to k or there are less than
# k - |GM| in the candidate list or the heuristic function plus the GBC is below the
# maximal GBC found then prune
if (
len(DF_tree.nodes[root]["GM"]) == k
or len(DF_tree.nodes[root]["CL"]) <= k - len(DF_tree.nodes[root]["GM"])
or DF_tree.nodes[root]["GBC"] + DF_tree.nodes[root]["heu"] <= max_GBC
):
return max_GBC, DF_tree, max_group
# finding the heuristic of both children
node_p, node_m, DF_tree = _heuristic(k, root, DF_tree, D, nodes, greedy)
# finding the child with the bigger heuristic + GBC and expand
# that node first if greedy then only expand the plus node
if greedy:
max_GBC, DF_tree, max_group = _dfbnb(
G, k, DF_tree, max_GBC, node_p, D, max_group, nodes, greedy
)
elif (
DF_tree.nodes[node_p]["GBC"] + DF_tree.nodes[node_p]["heu"]
> DF_tree.nodes[node_m]["GBC"] + DF_tree.nodes[node_m]["heu"]
):
max_GBC, DF_tree, max_group = _dfbnb(
G, k, DF_tree, max_GBC, node_p, D, max_group, nodes, greedy
)
max_GBC, DF_tree, max_group = _dfbnb(
G, k, DF_tree, max_GBC, node_m, D, max_group, nodes, greedy
)
else:
max_GBC, DF_tree, max_group = _dfbnb(
G, k, DF_tree, max_GBC, node_m, D, max_group, nodes, greedy
)
max_GBC, DF_tree, max_group = _dfbnb(
G, k, DF_tree, max_GBC, node_p, D, max_group, nodes, greedy
)
return max_GBC, DF_tree, max_group
def _heuristic(k, root, DF_tree, D, nodes, greedy):
import numpy as np
# This helper function add two nodes to DF_tree - one left son and the
# other right son, finds their heuristic, CL, GBC, and GM
node_p = DF_tree.number_of_nodes() + 1
node_m = DF_tree.number_of_nodes() + 2
added_node = DF_tree.nodes[root]["CL"][0]
# adding the plus node
DF_tree.add_nodes_from([(node_p, deepcopy(DF_tree.nodes[root]))])
DF_tree.nodes[node_p]["GM"].append(added_node)
DF_tree.nodes[node_p]["GBC"] += DF_tree.nodes[node_p]["cont"][added_node]
root_node = DF_tree.nodes[root]
for x in nodes:
for y in nodes:
dxvy = 0
dxyv = 0
dvxy = 0
if not (
root_node["sigma"][x][y] == 0
or root_node["sigma"][x][added_node] == 0
or root_node["sigma"][added_node][y] == 0
):
if D[x][added_node] == D[x][y] + D[y][added_node]:
dxyv = (
root_node["sigma"][x][y]
* root_node["sigma"][y][added_node]
/ root_node["sigma"][x][added_node]
)
if D[x][y] == D[x][added_node] + D[added_node][y]:
dxvy = (
root_node["sigma"][x][added_node]
* root_node["sigma"][added_node][y]
/ root_node["sigma"][x][y]
)
if D[added_node][y] == D[added_node][x] + D[x][y]:
dvxy = (
root_node["sigma"][added_node][x]
* root_node["sigma"][x][y]
/ root_node["sigma"][added_node][y]
)
DF_tree.nodes[node_p]["sigma"][x][y] = root_node["sigma"][x][y] * (1 - dxvy)
DF_tree.nodes[node_p]["betweenness"][x][y] = (
root_node["betweenness"][x][y] - root_node["betweenness"][x][y] * dxvy
)
if y != added_node:
DF_tree.nodes[node_p]["betweenness"][x][y] -= (
root_node["betweenness"][x][added_node] * dxyv
)
if x != added_node:
DF_tree.nodes[node_p]["betweenness"][x][y] -= (
root_node["betweenness"][added_node][y] * dvxy
)
DF_tree.nodes[node_p]["CL"] = [
node
for _, node in sorted(
zip(np.diag(DF_tree.nodes[node_p]["betweenness"]), nodes), reverse=True
)
if node not in DF_tree.nodes[node_p]["GM"]
]
DF_tree.nodes[node_p]["cont"] = dict(
zip(nodes, np.diag(DF_tree.nodes[node_p]["betweenness"]))
)
DF_tree.nodes[node_p]["heu"] = 0
for i in range(k - len(DF_tree.nodes[node_p]["GM"])):
DF_tree.nodes[node_p]["heu"] += DF_tree.nodes[node_p]["cont"][
DF_tree.nodes[node_p]["CL"][i]
]
# adding the minus node - don't insert the first node in the CL to GM
# Insert minus node only if isn't greedy type algorithm
if not greedy:
DF_tree.add_nodes_from([(node_m, deepcopy(DF_tree.nodes[root]))])
DF_tree.nodes[node_m]["CL"].pop(0)
DF_tree.nodes[node_m]["cont"].pop(added_node)
DF_tree.nodes[node_m]["heu"] = 0
for i in range(k - len(DF_tree.nodes[node_m]["GM"])):
DF_tree.nodes[node_m]["heu"] += DF_tree.nodes[node_m]["cont"][
DF_tree.nodes[node_m]["CL"][i]
]
else:
node_m = None
return node_p, node_m, DF_tree
@nx._dispatch(edge_attrs="weight")
def group_closeness_centrality(G, S, weight=None):
r"""Compute the group closeness centrality for a group of nodes.
Group closeness centrality of a group of nodes $S$ is a measure
of how close the group is to the other nodes in the graph.
.. math::
c_{close}(S) = \frac{|V-S|}{\sum_{v \in V-S} d_{S, v}}
d_{S, v} = min_{u \in S} (d_{u, v})
where $V$ is the set of nodes, $d_{S, v}$ is the distance of
the group $S$ from $v$ defined as above. ($V-S$ is the set of nodes
in $V$ that are not in $S$).
Parameters
----------
G : graph
A NetworkX graph.
S : list or set
S is a group of nodes which belong to G, for which group closeness
centrality is to be calculated.
weight : None or string, optional (default=None)
If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.
The weight of an edge is treated as the length or distance between the two sides.
Raises
------
NodeNotFound
If node(s) in S are not present in G.
Returns
-------
closeness : float
Group closeness centrality of the group S.
See Also
--------
closeness_centrality
Notes
-----
The measure was introduced in [1]_.
The formula implemented here is described in [2]_.
Higher values of closeness indicate greater centrality.
It is assumed that 1 / 0 is 0 (required in the case of directed graphs,
or when a shortest path length is 0).
The number of nodes in the group must be a maximum of n - 1 where `n`
is the total number of nodes in the graph.
For directed graphs, the incoming distance is utilized here. To use the
outward distance, act on `G.reverse()`.
For weighted graphs the edge weights must be greater than zero.
Zero edge weights can produce an infinite number of equal length
paths between pairs of nodes.
References
----------
.. [1] M G Everett and S P Borgatti:
The Centrality of Groups and Classes.
Journal of Mathematical Sociology. 23(3): 181-201. 1999.
http://www.analytictech.com/borgatti/group_centrality.htm
.. [2] J. Zhao et. al.:
Measuring and Maximizing Group Closeness Centrality over
Disk Resident Graphs.
WWWConference Proceedings, 2014. 689-694.
https://doi.org/10.1145/2567948.2579356
"""
if G.is_directed():
G = G.reverse() # reverse view
closeness = 0 # initialize to 0
V = set(G) # set of nodes in G
S = set(S) # set of nodes in group S
V_S = V - S # set of nodes in V but not S
shortest_path_lengths = nx.multi_source_dijkstra_path_length(G, S, weight=weight)
# accumulation
for v in V_S:
try:
closeness += shortest_path_lengths[v]
except KeyError: # no path exists
closeness += 0
try:
closeness = len(V_S) / closeness
except ZeroDivisionError: # 1 / 0 assumed as 0
closeness = 0
return closeness
@nx._dispatch
def group_degree_centrality(G, S):
"""Compute the group degree centrality for a group of nodes.
Group degree centrality of a group of nodes $S$ is the fraction
of non-group members connected to group members.
Parameters
----------
G : graph
A NetworkX graph.
S : list or set
S is a group of nodes which belong to G, for which group degree
centrality is to be calculated.
Raises
------
NetworkXError
If node(s) in S are not in G.
Returns
-------
centrality : float
Group degree centrality of the group S.
See Also
--------
degree_centrality
group_in_degree_centrality
group_out_degree_centrality
Notes
-----
The measure was introduced in [1]_.
The number of nodes in the group must be a maximum of n - 1 where `n`
is the total number of nodes in the graph.
References
----------
.. [1] M G Everett and S P Borgatti:
The Centrality of Groups and Classes.
Journal of Mathematical Sociology. 23(3): 181-201. 1999.
http://www.analytictech.com/borgatti/group_centrality.htm
"""
centrality = len(set().union(*[set(G.neighbors(i)) for i in S]) - set(S))
centrality /= len(G.nodes()) - len(S)
return centrality
@not_implemented_for("undirected")
@nx._dispatch
def group_in_degree_centrality(G, S):
"""Compute the group in-degree centrality for a group of nodes.
Group in-degree centrality of a group of nodes $S$ is the fraction
of non-group members connected to group members by incoming edges.
Parameters
----------
G : graph
A NetworkX graph.
S : list or set
S is a group of nodes which belong to G, for which group in-degree
centrality is to be calculated.
Returns
-------
centrality : float
Group in-degree centrality of the group S.
Raises
------
NetworkXNotImplemented
If G is undirected.
NodeNotFound
If node(s) in S are not in G.
See Also
--------
degree_centrality
group_degree_centrality
group_out_degree_centrality
Notes
-----
The number of nodes in the group must be a maximum of n - 1 where `n`
is the total number of nodes in the graph.
`G.neighbors(i)` gives nodes with an outward edge from i, in a DiGraph,
so for group in-degree centrality, the reverse graph is used.
"""
return group_degree_centrality(G.reverse(), S)
@not_implemented_for("undirected")
@nx._dispatch
def group_out_degree_centrality(G, S):
"""Compute the group out-degree centrality for a group of nodes.
Group out-degree centrality of a group of nodes $S$ is the fraction
of non-group members connected to group members by outgoing edges.
Parameters
----------
G : graph
A NetworkX graph.
S : list or set
S is a group of nodes which belong to G, for which group in-degree
centrality is to be calculated.
Returns
-------
centrality : float
Group out-degree centrality of the group S.
Raises
------
NetworkXNotImplemented
If G is undirected.
NodeNotFound
If node(s) in S are not in G.
See Also
--------
degree_centrality
group_degree_centrality
group_in_degree_centrality
Notes
-----
The number of nodes in the group must be a maximum of n - 1 where `n`
is the total number of nodes in the graph.
`G.neighbors(i)` gives nodes with an outward edge from i, in a DiGraph,
so for group out-degree centrality, the graph itself is used.
"""
return group_degree_centrality(G, S)
|