File size: 5,403 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
Laplacian centrality measures.
"""
import networkx as nx

__all__ = ["laplacian_centrality"]


@nx._dispatch(edge_attrs="weight")
def laplacian_centrality(
    G, normalized=True, nodelist=None, weight="weight", walk_type=None, alpha=0.95
):
    r"""Compute the Laplacian centrality for nodes in the graph `G`.

    The Laplacian Centrality of a node ``i`` is measured by the drop in the
    Laplacian Energy after deleting node ``i`` from the graph. The Laplacian Energy
    is the sum of the squared eigenvalues of a graph's Laplacian matrix.

    .. math::

        C_L(u_i,G) = \frac{(\Delta E)_i}{E_L (G)} = \frac{E_L (G)-E_L (G_i)}{E_L (G)}

        E_L (G) = \sum_{i=0}^n \lambda_i^2

    Where $E_L (G)$ is the Laplacian energy of graph `G`,
    E_L (G_i) is the Laplacian energy of graph `G` after deleting node ``i``
    and $\lambda_i$ are the eigenvalues of `G`'s Laplacian matrix.
    This formula shows the normalized value. Without normalization,
    the numerator on the right side is returned.

    Parameters
    ----------
    G : graph
        A networkx graph

    normalized : bool (default = True)
        If True the centrality score is scaled so the sum over all nodes is 1.
        If False the centrality score for each node is the drop in Laplacian
        energy when that node is removed.

    nodelist : list, optional (default = None)
        The rows and columns are ordered according to the nodes in nodelist.
        If nodelist is None, then the ordering is produced by G.nodes().

    weight: string or None, optional (default=`weight`)
        Optional parameter `weight` to compute the Laplacian matrix.
        The edge data key used to compute each value in the matrix.
        If None, then each edge has weight 1.

    walk_type : string or None, optional (default=None)
        Optional parameter `walk_type` used when calling
        :func:`directed_laplacian_matrix <networkx.directed_laplacian_matrix>`.
        If None, the transition matrix is selected depending on the properties
        of the graph. Otherwise can be `random`, `lazy`, or `pagerank`.

    alpha : real (default = 0.95)
        Optional parameter `alpha` used when calling
        :func:`directed_laplacian_matrix <networkx.directed_laplacian_matrix>`.
        (1 - alpha) is the teleportation probability used with pagerank.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with Laplacian centrality as the value.

    Examples
    --------
    >>> G = nx.Graph()
    >>> edges = [(0, 1, 4), (0, 2, 2), (2, 1, 1), (1, 3, 2), (1, 4, 2), (4, 5, 1)]
    >>> G.add_weighted_edges_from(edges)
    >>> sorted((v, f"{c:0.2f}") for v, c in laplacian_centrality(G).items())
    [(0, '0.70'), (1, '0.90'), (2, '0.28'), (3, '0.22'), (4, '0.26'), (5, '0.04')]

    Notes
    -----
    The algorithm is implemented based on [1]_ with an extension to directed graphs
    using the ``directed_laplacian_matrix`` function.

    Raises
    ------
    NetworkXPointlessConcept
        If the graph `G` is the null graph.
    ZeroDivisionError
        If the graph `G` has no edges (is empty) and normalization is requested.

    References
    ----------
    .. [1] Qi, X., Fuller, E., Wu, Q., Wu, Y., and Zhang, C.-Q. (2012).
       Laplacian centrality: A new centrality measure for weighted networks.
       Information Sciences, 194:240-253.
       https://math.wvu.edu/~cqzhang/Publication-files/my-paper/INS-2012-Laplacian-W.pdf

    See Also
    --------
    :func:`~networkx.linalg.laplacianmatrix.directed_laplacian_matrix`
    :func:`~networkx.linalg.laplacianmatrix.laplacian_matrix`
    """
    import numpy as np
    import scipy as sp

    if len(G) == 0:
        raise nx.NetworkXPointlessConcept("null graph has no centrality defined")
    if G.size(weight=weight) == 0:
        if normalized:
            raise ZeroDivisionError("graph with no edges has zero full energy")
        return {n: 0 for n in G}

    if nodelist is not None:
        nodeset = set(G.nbunch_iter(nodelist))
        if len(nodeset) != len(nodelist):
            raise nx.NetworkXError("nodelist has duplicate nodes or nodes not in G")
        nodes = nodelist + [n for n in G if n not in nodeset]
    else:
        nodelist = nodes = list(G)

    if G.is_directed():
        lap_matrix = nx.directed_laplacian_matrix(G, nodes, weight, walk_type, alpha)
    else:
        lap_matrix = nx.laplacian_matrix(G, nodes, weight).toarray()

    full_energy = np.power(sp.linalg.eigh(lap_matrix, eigvals_only=True), 2).sum()

    # calculate laplacian centrality
    laplace_centralities_dict = {}
    for i, node in enumerate(nodelist):
        # remove row and col i from lap_matrix
        all_but_i = list(np.arange(lap_matrix.shape[0]))
        all_but_i.remove(i)
        A_2 = lap_matrix[all_but_i, :][:, all_but_i]

        # Adjust diagonal for removed row
        new_diag = lap_matrix.diagonal() - abs(lap_matrix[:, i])
        np.fill_diagonal(A_2, new_diag[all_but_i])

        if len(all_but_i) > 0:  # catches degenerate case of single node
            new_energy = np.power(sp.linalg.eigh(A_2, eigvals_only=True), 2).sum()
        else:
            new_energy = 0.0

        lapl_cent = full_energy - new_energy
        if normalized:
            lapl_cent = lapl_cent / full_energy

        laplace_centralities_dict[node] = lapl_cent

    return laplace_centralities_dict