File size: 20,281 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
"""Algorithms to characterize the number of triangles in a graph."""

from collections import Counter
from itertools import chain, combinations

import networkx as nx
from networkx.utils import not_implemented_for

__all__ = [
    "triangles",
    "average_clustering",
    "clustering",
    "transitivity",
    "square_clustering",
    "generalized_degree",
]


@not_implemented_for("directed")
@nx._dispatch
def triangles(G, nodes=None):
    """Compute the number of triangles.

    Finds the number of triangles that include a node as one vertex.

    Parameters
    ----------
    G : graph
       A networkx graph

    nodes : node, iterable of nodes, or None (default=None)
        If a singleton node, return the number of triangles for that node.
        If an iterable, compute the number of triangles for each of those nodes.
        If `None` (the default) compute the number of triangles for all nodes in `G`.

    Returns
    -------
    out : dict or int
       If `nodes` is a container of nodes, returns number of triangles keyed by node (dict).
       If `nodes` is a specific node, returns number of triangles for the node (int).

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> print(nx.triangles(G, 0))
    6
    >>> print(nx.triangles(G))
    {0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
    >>> print(list(nx.triangles(G, [0, 1]).values()))
    [6, 6]

    Notes
    -----
    Self loops are ignored.

    """
    if nodes is not None:
        # If `nodes` represents a single node, return only its number of triangles
        if nodes in G:
            return next(_triangles_and_degree_iter(G, nodes))[2] // 2

        # if `nodes` is a container of nodes, then return a
        # dictionary mapping node to number of triangles.
        return {v: t // 2 for v, d, t, _ in _triangles_and_degree_iter(G, nodes)}

    # if nodes is None, then compute triangles for the complete graph

    # dict used to avoid visiting the same nodes twice
    # this allows calculating/counting each triangle only once
    later_neighbors = {}

    # iterate over the nodes in a graph
    for node, neighbors in G.adjacency():
        later_neighbors[node] = {
            n for n in neighbors if n not in later_neighbors and n != node
        }

    # instantiate Counter for each node to include isolated nodes
    # add 1 to the count if a nodes neighbor's neighbor is also a neighbor
    triangle_counts = Counter(dict.fromkeys(G, 0))
    for node1, neighbors in later_neighbors.items():
        for node2 in neighbors:
            third_nodes = neighbors & later_neighbors[node2]
            m = len(third_nodes)
            triangle_counts[node1] += m
            triangle_counts[node2] += m
            triangle_counts.update(third_nodes)

    return dict(triangle_counts)


@not_implemented_for("multigraph")
def _triangles_and_degree_iter(G, nodes=None):
    """Return an iterator of (node, degree, triangles, generalized degree).

    This double counts triangles so you may want to divide by 2.
    See degree(), triangles() and generalized_degree() for definitions
    and details.

    """
    if nodes is None:
        nodes_nbrs = G.adj.items()
    else:
        nodes_nbrs = ((n, G[n]) for n in G.nbunch_iter(nodes))

    for v, v_nbrs in nodes_nbrs:
        vs = set(v_nbrs) - {v}
        gen_degree = Counter(len(vs & (set(G[w]) - {w})) for w in vs)
        ntriangles = sum(k * val for k, val in gen_degree.items())
        yield (v, len(vs), ntriangles, gen_degree)


@not_implemented_for("multigraph")
def _weighted_triangles_and_degree_iter(G, nodes=None, weight="weight"):
    """Return an iterator of (node, degree, weighted_triangles).

    Used for weighted clustering.
    Note: this returns the geometric average weight of edges in the triangle.
    Also, each triangle is counted twice (each direction).
    So you may want to divide by 2.

    """
    import numpy as np

    if weight is None or G.number_of_edges() == 0:
        max_weight = 1
    else:
        max_weight = max(d.get(weight, 1) for u, v, d in G.edges(data=True))
    if nodes is None:
        nodes_nbrs = G.adj.items()
    else:
        nodes_nbrs = ((n, G[n]) for n in G.nbunch_iter(nodes))

    def wt(u, v):
        return G[u][v].get(weight, 1) / max_weight

    for i, nbrs in nodes_nbrs:
        inbrs = set(nbrs) - {i}
        weighted_triangles = 0
        seen = set()
        for j in inbrs:
            seen.add(j)
            # This avoids counting twice -- we double at the end.
            jnbrs = set(G[j]) - seen
            # Only compute the edge weight once, before the inner inner
            # loop.
            wij = wt(i, j)
            weighted_triangles += sum(
                np.cbrt([(wij * wt(j, k) * wt(k, i)) for k in inbrs & jnbrs])
            )
        yield (i, len(inbrs), 2 * weighted_triangles)


@not_implemented_for("multigraph")
def _directed_triangles_and_degree_iter(G, nodes=None):
    """Return an iterator of
    (node, total_degree, reciprocal_degree, directed_triangles).

    Used for directed clustering.
    Note that unlike `_triangles_and_degree_iter()`, this function counts
    directed triangles so does not count triangles twice.

    """
    nodes_nbrs = ((n, G._pred[n], G._succ[n]) for n in G.nbunch_iter(nodes))

    for i, preds, succs in nodes_nbrs:
        ipreds = set(preds) - {i}
        isuccs = set(succs) - {i}

        directed_triangles = 0
        for j in chain(ipreds, isuccs):
            jpreds = set(G._pred[j]) - {j}
            jsuccs = set(G._succ[j]) - {j}
            directed_triangles += sum(
                1
                for k in chain(
                    (ipreds & jpreds),
                    (ipreds & jsuccs),
                    (isuccs & jpreds),
                    (isuccs & jsuccs),
                )
            )
        dtotal = len(ipreds) + len(isuccs)
        dbidirectional = len(ipreds & isuccs)
        yield (i, dtotal, dbidirectional, directed_triangles)


@not_implemented_for("multigraph")
def _directed_weighted_triangles_and_degree_iter(G, nodes=None, weight="weight"):
    """Return an iterator of
    (node, total_degree, reciprocal_degree, directed_weighted_triangles).

    Used for directed weighted clustering.
    Note that unlike `_weighted_triangles_and_degree_iter()`, this function counts
    directed triangles so does not count triangles twice.

    """
    import numpy as np

    if weight is None or G.number_of_edges() == 0:
        max_weight = 1
    else:
        max_weight = max(d.get(weight, 1) for u, v, d in G.edges(data=True))

    nodes_nbrs = ((n, G._pred[n], G._succ[n]) for n in G.nbunch_iter(nodes))

    def wt(u, v):
        return G[u][v].get(weight, 1) / max_weight

    for i, preds, succs in nodes_nbrs:
        ipreds = set(preds) - {i}
        isuccs = set(succs) - {i}

        directed_triangles = 0
        for j in ipreds:
            jpreds = set(G._pred[j]) - {j}
            jsuccs = set(G._succ[j]) - {j}
            directed_triangles += sum(
                np.cbrt([(wt(j, i) * wt(k, i) * wt(k, j)) for k in ipreds & jpreds])
            )
            directed_triangles += sum(
                np.cbrt([(wt(j, i) * wt(k, i) * wt(j, k)) for k in ipreds & jsuccs])
            )
            directed_triangles += sum(
                np.cbrt([(wt(j, i) * wt(i, k) * wt(k, j)) for k in isuccs & jpreds])
            )
            directed_triangles += sum(
                np.cbrt([(wt(j, i) * wt(i, k) * wt(j, k)) for k in isuccs & jsuccs])
            )

        for j in isuccs:
            jpreds = set(G._pred[j]) - {j}
            jsuccs = set(G._succ[j]) - {j}
            directed_triangles += sum(
                np.cbrt([(wt(i, j) * wt(k, i) * wt(k, j)) for k in ipreds & jpreds])
            )
            directed_triangles += sum(
                np.cbrt([(wt(i, j) * wt(k, i) * wt(j, k)) for k in ipreds & jsuccs])
            )
            directed_triangles += sum(
                np.cbrt([(wt(i, j) * wt(i, k) * wt(k, j)) for k in isuccs & jpreds])
            )
            directed_triangles += sum(
                np.cbrt([(wt(i, j) * wt(i, k) * wt(j, k)) for k in isuccs & jsuccs])
            )

        dtotal = len(ipreds) + len(isuccs)
        dbidirectional = len(ipreds & isuccs)
        yield (i, dtotal, dbidirectional, directed_triangles)


@nx._dispatch(edge_attrs="weight")
def average_clustering(G, nodes=None, weight=None, count_zeros=True):
    r"""Compute the average clustering coefficient for the graph G.

    The clustering coefficient for the graph is the average,

    .. math::

       C = \frac{1}{n}\sum_{v \in G} c_v,

    where :math:`n` is the number of nodes in `G`.

    Parameters
    ----------
    G : graph

    nodes : container of nodes, optional (default=all nodes in G)
       Compute average clustering for nodes in this container.

    weight : string or None, optional (default=None)
       The edge attribute that holds the numerical value used as a weight.
       If None, then each edge has weight 1.

    count_zeros : bool
       If False include only the nodes with nonzero clustering in the average.

    Returns
    -------
    avg : float
       Average clustering

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> print(nx.average_clustering(G))
    1.0

    Notes
    -----
    This is a space saving routine; it might be faster
    to use the clustering function to get a list and then take the average.

    Self loops are ignored.

    References
    ----------
    .. [1] Generalizations of the clustering coefficient to weighted
       complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
       K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
       http://jponnela.com/web_documents/a9.pdf
    .. [2] Marcus Kaiser,  Mean clustering coefficients: the role of isolated
       nodes and leafs on clustering measures for small-world networks.
       https://arxiv.org/abs/0802.2512
    """
    c = clustering(G, nodes, weight=weight).values()
    if not count_zeros:
        c = [v for v in c if abs(v) > 0]
    return sum(c) / len(c)


@nx._dispatch(edge_attrs="weight")
def clustering(G, nodes=None, weight=None):
    r"""Compute the clustering coefficient for nodes.

    For unweighted graphs, the clustering of a node :math:`u`
    is the fraction of possible triangles through that node that exist,

    .. math::

      c_u = \frac{2 T(u)}{deg(u)(deg(u)-1)},

    where :math:`T(u)` is the number of triangles through node :math:`u` and
    :math:`deg(u)` is the degree of :math:`u`.

    For weighted graphs, there are several ways to define clustering [1]_.
    the one used here is defined
    as the geometric average of the subgraph edge weights [2]_,

    .. math::

       c_u = \frac{1}{deg(u)(deg(u)-1))}
             \sum_{vw} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}.

    The edge weights :math:`\hat{w}_{uv}` are normalized by the maximum weight
    in the network :math:`\hat{w}_{uv} = w_{uv}/\max(w)`.

    The value of :math:`c_u` is assigned to 0 if :math:`deg(u) < 2`.

    Additionally, this weighted definition has been generalized to support negative edge weights [3]_.

    For directed graphs, the clustering is similarly defined as the fraction
    of all possible directed triangles or geometric average of the subgraph
    edge weights for unweighted and weighted directed graph respectively [4]_.

    .. math::

       c_u = \frac{T(u)}{2(deg^{tot}(u)(deg^{tot}(u)-1) - 2deg^{\leftrightarrow}(u))},

    where :math:`T(u)` is the number of directed triangles through node
    :math:`u`, :math:`deg^{tot}(u)` is the sum of in degree and out degree of
    :math:`u` and :math:`deg^{\leftrightarrow}(u)` is the reciprocal degree of
    :math:`u`.


    Parameters
    ----------
    G : graph

    nodes : node, iterable of nodes, or None (default=None)
        If a singleton node, return the number of triangles for that node.
        If an iterable, compute the number of triangles for each of those nodes.
        If `None` (the default) compute the number of triangles for all nodes in `G`.

    weight : string or None, optional (default=None)
       The edge attribute that holds the numerical value used as a weight.
       If None, then each edge has weight 1.

    Returns
    -------
    out : float, or dictionary
       Clustering coefficient at specified nodes

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> print(nx.clustering(G, 0))
    1.0
    >>> print(nx.clustering(G))
    {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

    Notes
    -----
    Self loops are ignored.

    References
    ----------
    .. [1] Generalizations of the clustering coefficient to weighted
       complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
       K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
       http://jponnela.com/web_documents/a9.pdf
    .. [2] Intensity and coherence of motifs in weighted complex
       networks by J. P. Onnela, J. Saramäki, J. Kertész, and K. Kaski,
       Physical Review E, 71(6), 065103 (2005).
    .. [3] Generalization of Clustering Coefficients to Signed Correlation Networks
       by G. Costantini and M. Perugini, PloS one, 9(2), e88669 (2014).
    .. [4] Clustering in complex directed networks by G. Fagiolo,
       Physical Review E, 76(2), 026107 (2007).
    """
    if G.is_directed():
        if weight is not None:
            td_iter = _directed_weighted_triangles_and_degree_iter(G, nodes, weight)
            clusterc = {
                v: 0 if t == 0 else t / ((dt * (dt - 1) - 2 * db) * 2)
                for v, dt, db, t in td_iter
            }
        else:
            td_iter = _directed_triangles_and_degree_iter(G, nodes)
            clusterc = {
                v: 0 if t == 0 else t / ((dt * (dt - 1) - 2 * db) * 2)
                for v, dt, db, t in td_iter
            }
    else:
        # The formula 2*T/(d*(d-1)) from docs is t/(d*(d-1)) here b/c t==2*T
        if weight is not None:
            td_iter = _weighted_triangles_and_degree_iter(G, nodes, weight)
            clusterc = {v: 0 if t == 0 else t / (d * (d - 1)) for v, d, t in td_iter}
        else:
            td_iter = _triangles_and_degree_iter(G, nodes)
            clusterc = {v: 0 if t == 0 else t / (d * (d - 1)) for v, d, t, _ in td_iter}
    if nodes in G:
        # Return the value of the sole entry in the dictionary.
        return clusterc[nodes]
    return clusterc


@nx._dispatch
def transitivity(G):
    r"""Compute graph transitivity, the fraction of all possible triangles
    present in G.

    Possible triangles are identified by the number of "triads"
    (two edges with a shared vertex).

    The transitivity is

    .. math::

        T = 3\frac{\#triangles}{\#triads}.

    Parameters
    ----------
    G : graph

    Returns
    -------
    out : float
       Transitivity

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> print(nx.transitivity(G))
    1.0
    """
    triangles_contri = [
        (t, d * (d - 1)) for v, d, t, _ in _triangles_and_degree_iter(G)
    ]
    # If the graph is empty
    if len(triangles_contri) == 0:
        return 0
    triangles, contri = map(sum, zip(*triangles_contri))
    return 0 if triangles == 0 else triangles / contri


@nx._dispatch
def square_clustering(G, nodes=None):
    r"""Compute the squares clustering coefficient for nodes.

    For each node return the fraction of possible squares that exist at
    the node [1]_

    .. math::
       C_4(v) = \frac{ \sum_{u=1}^{k_v}
       \sum_{w=u+1}^{k_v} q_v(u,w) }{ \sum_{u=1}^{k_v}
       \sum_{w=u+1}^{k_v} [a_v(u,w) + q_v(u,w)]},

    where :math:`q_v(u,w)` are the number of common neighbors of :math:`u` and
    :math:`w` other than :math:`v` (ie squares), and :math:`a_v(u,w) = (k_u -
    (1+q_v(u,w)+\theta_{uv})) + (k_w - (1+q_v(u,w)+\theta_{uw}))`, where
    :math:`\theta_{uw} = 1` if :math:`u` and :math:`w` are connected and 0
    otherwise. [2]_

    Parameters
    ----------
    G : graph

    nodes : container of nodes, optional (default=all nodes in G)
       Compute clustering for nodes in this container.

    Returns
    -------
    c4 : dictionary
       A dictionary keyed by node with the square clustering coefficient value.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> print(nx.square_clustering(G, 0))
    1.0
    >>> print(nx.square_clustering(G))
    {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

    Notes
    -----
    While :math:`C_3(v)` (triangle clustering) gives the probability that
    two neighbors of node v are connected with each other, :math:`C_4(v)` is
    the probability that two neighbors of node v share a common
    neighbor different from v. This algorithm can be applied to both
    bipartite and unipartite networks.

    References
    ----------
    .. [1] Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005
        Cycles and clustering in bipartite networks.
        Physical Review E (72) 056127.
    .. [2] Zhang, Peng et al. Clustering Coefficient and Community Structure of
        Bipartite Networks. Physica A: Statistical Mechanics and its Applications 387.27 (2008): 6869–6875.
        https://arxiv.org/abs/0710.0117v1
    """
    if nodes is None:
        node_iter = G
    else:
        node_iter = G.nbunch_iter(nodes)
    clustering = {}
    for v in node_iter:
        clustering[v] = 0
        potential = 0
        for u, w in combinations(G[v], 2):
            squares = len((set(G[u]) & set(G[w])) - {v})
            clustering[v] += squares
            degm = squares + 1
            if w in G[u]:
                degm += 1
            potential += (len(G[u]) - degm) + (len(G[w]) - degm) + squares
        if potential > 0:
            clustering[v] /= potential
    if nodes in G:
        # Return the value of the sole entry in the dictionary.
        return clustering[nodes]
    return clustering


@not_implemented_for("directed")
@nx._dispatch
def generalized_degree(G, nodes=None):
    r"""Compute the generalized degree for nodes.

    For each node, the generalized degree shows how many edges of given
    triangle multiplicity the node is connected to. The triangle multiplicity
    of an edge is the number of triangles an edge participates in. The
    generalized degree of node :math:`i` can be written as a vector
    :math:`\mathbf{k}_i=(k_i^{(0)}, \dotsc, k_i^{(N-2)})` where
    :math:`k_i^{(j)}` is the number of edges attached to node :math:`i` that
    participate in :math:`j` triangles.

    Parameters
    ----------
    G : graph

    nodes : container of nodes, optional (default=all nodes in G)
       Compute the generalized degree for nodes in this container.

    Returns
    -------
    out : Counter, or dictionary of Counters
       Generalized degree of specified nodes. The Counter is keyed by edge
       triangle multiplicity.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> print(nx.generalized_degree(G, 0))
    Counter({3: 4})
    >>> print(nx.generalized_degree(G))
    {0: Counter({3: 4}), 1: Counter({3: 4}), 2: Counter({3: 4}), 3: Counter({3: 4}), 4: Counter({3: 4})}

    To recover the number of triangles attached to a node:

    >>> k1 = nx.generalized_degree(G, 0)
    >>> sum([k * v for k, v in k1.items()]) / 2 == nx.triangles(G, 0)
    True

    Notes
    -----
    In a network of N nodes, the highest triangle multiplicity an edge can have
    is N-2.

    The return value does not include a `zero` entry if no edges of a
    particular triangle multiplicity are present.

    The number of triangles node :math:`i` is attached to can be recovered from
    the generalized degree :math:`\mathbf{k}_i=(k_i^{(0)}, \dotsc,
    k_i^{(N-2)})` by :math:`(k_i^{(1)}+2k_i^{(2)}+\dotsc +(N-2)k_i^{(N-2)})/2`.

    References
    ----------
    .. [1] Networks with arbitrary edge multiplicities by V. Zlatić,
        D. Garlaschelli and G. Caldarelli, EPL (Europhysics Letters),
        Volume 97, Number 2 (2012).
        https://iopscience.iop.org/article/10.1209/0295-5075/97/28005
    """
    if nodes in G:
        return next(_triangles_and_degree_iter(G, nodes))[3]
    return {v: gd for v, d, t, gd in _triangles_and_degree_iter(G, nodes)}