Spaces:
Running
Running
File size: 12,765 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
"""Biconnected components and articulation points."""
from itertools import chain
import networkx as nx
from networkx.utils.decorators import not_implemented_for
__all__ = [
"biconnected_components",
"biconnected_component_edges",
"is_biconnected",
"articulation_points",
]
@not_implemented_for("directed")
@nx._dispatch
def is_biconnected(G):
"""Returns True if the graph is biconnected, False otherwise.
A graph is biconnected if, and only if, it cannot be disconnected by
removing only one node (and all edges incident on that node). If
removing a node increases the number of disconnected components
in the graph, that node is called an articulation point, or cut
vertex. A biconnected graph has no articulation points.
Parameters
----------
G : NetworkX Graph
An undirected graph.
Returns
-------
biconnected : bool
True if the graph is biconnected, False otherwise.
Raises
------
NetworkXNotImplemented
If the input graph is not undirected.
Examples
--------
>>> G = nx.path_graph(4)
>>> print(nx.is_biconnected(G))
False
>>> G.add_edge(0, 3)
>>> print(nx.is_biconnected(G))
True
See Also
--------
biconnected_components
articulation_points
biconnected_component_edges
is_strongly_connected
is_weakly_connected
is_connected
is_semiconnected
Notes
-----
The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node `n` is an articulation point if, and only
if, there exists a subtree rooted at `n` such that there is no
back edge from any successor of `n` that links to a predecessor of
`n` in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.
References
----------
.. [1] Hopcroft, J.; Tarjan, R. (1973).
"Efficient algorithms for graph manipulation".
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
"""
bccs = biconnected_components(G)
try:
bcc = next(bccs)
except StopIteration:
# No bicomponents (empty graph?)
return False
try:
next(bccs)
except StopIteration:
# Only one bicomponent
return len(bcc) == len(G)
else:
# Multiple bicomponents
return False
@not_implemented_for("directed")
@nx._dispatch
def biconnected_component_edges(G):
"""Returns a generator of lists of edges, one list for each biconnected
component of the input graph.
Biconnected components are maximal subgraphs such that the removal of a
node (and all edges incident on that node) will not disconnect the
subgraph. Note that nodes may be part of more than one biconnected
component. Those nodes are articulation points, or cut vertices.
However, each edge belongs to one, and only one, biconnected component.
Notice that by convention a dyad is considered a biconnected component.
Parameters
----------
G : NetworkX Graph
An undirected graph.
Returns
-------
edges : generator of lists
Generator of lists of edges, one list for each bicomponent.
Raises
------
NetworkXNotImplemented
If the input graph is not undirected.
Examples
--------
>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
5
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
1
See Also
--------
is_biconnected,
biconnected_components,
articulation_points,
Notes
-----
The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node `n` is an articulation point if, and only
if, there exists a subtree rooted at `n` such that there is no
back edge from any successor of `n` that links to a predecessor of
`n` in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.
References
----------
.. [1] Hopcroft, J.; Tarjan, R. (1973).
"Efficient algorithms for graph manipulation".
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
"""
yield from _biconnected_dfs(G, components=True)
@not_implemented_for("directed")
@nx._dispatch
def biconnected_components(G):
"""Returns a generator of sets of nodes, one set for each biconnected
component of the graph
Biconnected components are maximal subgraphs such that the removal of a
node (and all edges incident on that node) will not disconnect the
subgraph. Note that nodes may be part of more than one biconnected
component. Those nodes are articulation points, or cut vertices. The
removal of articulation points will increase the number of connected
components of the graph.
Notice that by convention a dyad is considered a biconnected component.
Parameters
----------
G : NetworkX Graph
An undirected graph.
Returns
-------
nodes : generator
Generator of sets of nodes, one set for each biconnected component.
Raises
------
NetworkXNotImplemented
If the input graph is not undirected.
Examples
--------
>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
1
You can generate a sorted list of biconnected components, largest
first, using sort.
>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
[5, 2]
If you only want the largest connected component, it's more
efficient to use max instead of sort.
>>> Gc = max(nx.biconnected_components(G), key=len)
To create the components as subgraphs use:
``(G.subgraph(c).copy() for c in biconnected_components(G))``
See Also
--------
is_biconnected
articulation_points
biconnected_component_edges
k_components : this function is a special case where k=2
bridge_components : similar to this function, but is defined using
2-edge-connectivity instead of 2-node-connectivity.
Notes
-----
The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node `n` is an articulation point if, and only
if, there exists a subtree rooted at `n` such that there is no
back edge from any successor of `n` that links to a predecessor of
`n` in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.
References
----------
.. [1] Hopcroft, J.; Tarjan, R. (1973).
"Efficient algorithms for graph manipulation".
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
"""
for comp in _biconnected_dfs(G, components=True):
yield set(chain.from_iterable(comp))
@not_implemented_for("directed")
@nx._dispatch
def articulation_points(G):
"""Yield the articulation points, or cut vertices, of a graph.
An articulation point or cut vertex is any node whose removal (along with
all its incident edges) increases the number of connected components of
a graph. An undirected connected graph without articulation points is
biconnected. Articulation points belong to more than one biconnected
component of a graph.
Notice that by convention a dyad is considered a biconnected component.
Parameters
----------
G : NetworkX Graph
An undirected graph.
Yields
------
node
An articulation point in the graph.
Raises
------
NetworkXNotImplemented
If the input graph is not undirected.
Examples
--------
>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> len(list(nx.articulation_points(G)))
4
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> len(list(nx.articulation_points(G)))
0
See Also
--------
is_biconnected
biconnected_components
biconnected_component_edges
Notes
-----
The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node `n` is an articulation point if, and only
if, there exists a subtree rooted at `n` such that there is no
back edge from any successor of `n` that links to a predecessor of
`n` in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.
References
----------
.. [1] Hopcroft, J.; Tarjan, R. (1973).
"Efficient algorithms for graph manipulation".
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
"""
seen = set()
for articulation in _biconnected_dfs(G, components=False):
if articulation not in seen:
seen.add(articulation)
yield articulation
@not_implemented_for("directed")
def _biconnected_dfs(G, components=True):
# depth-first search algorithm to generate articulation points
# and biconnected components
visited = set()
for start in G:
if start in visited:
continue
discovery = {start: 0} # time of first discovery of node during search
low = {start: 0}
root_children = 0
visited.add(start)
edge_stack = []
stack = [(start, start, iter(G[start]))]
edge_index = {}
while stack:
grandparent, parent, children = stack[-1]
try:
child = next(children)
if grandparent == child:
continue
if child in visited:
if discovery[child] <= discovery[parent]: # back edge
low[parent] = min(low[parent], discovery[child])
if components:
edge_index[parent, child] = len(edge_stack)
edge_stack.append((parent, child))
else:
low[child] = discovery[child] = len(discovery)
visited.add(child)
stack.append((parent, child, iter(G[child])))
if components:
edge_index[parent, child] = len(edge_stack)
edge_stack.append((parent, child))
except StopIteration:
stack.pop()
if len(stack) > 1:
if low[parent] >= discovery[grandparent]:
if components:
ind = edge_index[grandparent, parent]
yield edge_stack[ind:]
del edge_stack[ind:]
else:
yield grandparent
low[grandparent] = min(low[parent], low[grandparent])
elif stack: # length 1 so grandparent is root
root_children += 1
if components:
ind = edge_index[grandparent, parent]
yield edge_stack[ind:]
del edge_stack[ind:]
if not components:
# root node is articulation point if it has more than 1 child
if root_children > 1:
yield start
|