File size: 12,765 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
"""Biconnected components and articulation points."""
from itertools import chain

import networkx as nx
from networkx.utils.decorators import not_implemented_for

__all__ = [
    "biconnected_components",
    "biconnected_component_edges",
    "is_biconnected",
    "articulation_points",
]


@not_implemented_for("directed")
@nx._dispatch
def is_biconnected(G):
    """Returns True if the graph is biconnected, False otherwise.

    A graph is biconnected if, and only if, it cannot be disconnected by
    removing only one node (and all edges incident on that node).  If
    removing a node increases the number of disconnected components
    in the graph, that node is called an articulation point, or cut
    vertex.  A biconnected graph has no articulation points.

    Parameters
    ----------
    G : NetworkX Graph
        An undirected graph.

    Returns
    -------
    biconnected : bool
        True if the graph is biconnected, False otherwise.

    Raises
    ------
    NetworkXNotImplemented
        If the input graph is not undirected.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> print(nx.is_biconnected(G))
    False
    >>> G.add_edge(0, 3)
    >>> print(nx.is_biconnected(G))
    True

    See Also
    --------
    biconnected_components
    articulation_points
    biconnected_component_edges
    is_strongly_connected
    is_weakly_connected
    is_connected
    is_semiconnected

    Notes
    -----
    The algorithm to find articulation points and biconnected
    components is implemented using a non-recursive depth-first-search
    (DFS) that keeps track of the highest level that back edges reach
    in the DFS tree.  A node `n` is an articulation point if, and only
    if, there exists a subtree rooted at `n` such that there is no
    back edge from any successor of `n` that links to a predecessor of
    `n` in the DFS tree.  By keeping track of all the edges traversed
    by the DFS we can obtain the biconnected components because all
    edges of a bicomponent will be traversed consecutively between
    articulation points.

    References
    ----------
    .. [1] Hopcroft, J.; Tarjan, R. (1973).
       "Efficient algorithms for graph manipulation".
       Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

    """
    bccs = biconnected_components(G)
    try:
        bcc = next(bccs)
    except StopIteration:
        # No bicomponents (empty graph?)
        return False
    try:
        next(bccs)
    except StopIteration:
        # Only one bicomponent
        return len(bcc) == len(G)
    else:
        # Multiple bicomponents
        return False


@not_implemented_for("directed")
@nx._dispatch
def biconnected_component_edges(G):
    """Returns a generator of lists of edges, one list for each biconnected
    component of the input graph.

    Biconnected components are maximal subgraphs such that the removal of a
    node (and all edges incident on that node) will not disconnect the
    subgraph.  Note that nodes may be part of more than one biconnected
    component.  Those nodes are articulation points, or cut vertices.
    However, each edge belongs to one, and only one, biconnected component.

    Notice that by convention a dyad is considered a biconnected component.

    Parameters
    ----------
    G : NetworkX Graph
        An undirected graph.

    Returns
    -------
    edges : generator of lists
        Generator of lists of edges, one list for each bicomponent.

    Raises
    ------
    NetworkXNotImplemented
        If the input graph is not undirected.

    Examples
    --------
    >>> G = nx.barbell_graph(4, 2)
    >>> print(nx.is_biconnected(G))
    False
    >>> bicomponents_edges = list(nx.biconnected_component_edges(G))
    >>> len(bicomponents_edges)
    5
    >>> G.add_edge(2, 8)
    >>> print(nx.is_biconnected(G))
    True
    >>> bicomponents_edges = list(nx.biconnected_component_edges(G))
    >>> len(bicomponents_edges)
    1

    See Also
    --------
    is_biconnected,
    biconnected_components,
    articulation_points,

    Notes
    -----
    The algorithm to find articulation points and biconnected
    components is implemented using a non-recursive depth-first-search
    (DFS) that keeps track of the highest level that back edges reach
    in the DFS tree.  A node `n` is an articulation point if, and only
    if, there exists a subtree rooted at `n` such that there is no
    back edge from any successor of `n` that links to a predecessor of
    `n` in the DFS tree.  By keeping track of all the edges traversed
    by the DFS we can obtain the biconnected components because all
    edges of a bicomponent will be traversed consecutively between
    articulation points.

    References
    ----------
    .. [1] Hopcroft, J.; Tarjan, R. (1973).
           "Efficient algorithms for graph manipulation".
           Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

    """
    yield from _biconnected_dfs(G, components=True)


@not_implemented_for("directed")
@nx._dispatch
def biconnected_components(G):
    """Returns a generator of sets of nodes, one set for each biconnected
    component of the graph

    Biconnected components are maximal subgraphs such that the removal of a
    node (and all edges incident on that node) will not disconnect the
    subgraph. Note that nodes may be part of more than one biconnected
    component.  Those nodes are articulation points, or cut vertices.  The
    removal of articulation points will increase the number of connected
    components of the graph.

    Notice that by convention a dyad is considered a biconnected component.

    Parameters
    ----------
    G : NetworkX Graph
        An undirected graph.

    Returns
    -------
    nodes : generator
        Generator of sets of nodes, one set for each biconnected component.

    Raises
    ------
    NetworkXNotImplemented
        If the input graph is not undirected.

    Examples
    --------
    >>> G = nx.lollipop_graph(5, 1)
    >>> print(nx.is_biconnected(G))
    False
    >>> bicomponents = list(nx.biconnected_components(G))
    >>> len(bicomponents)
    2
    >>> G.add_edge(0, 5)
    >>> print(nx.is_biconnected(G))
    True
    >>> bicomponents = list(nx.biconnected_components(G))
    >>> len(bicomponents)
    1

    You can generate a sorted list of biconnected components, largest
    first, using sort.

    >>> G.remove_edge(0, 5)
    >>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
    [5, 2]

    If you only want the largest connected component, it's more
    efficient to use max instead of sort.

    >>> Gc = max(nx.biconnected_components(G), key=len)

    To create the components as subgraphs use:
    ``(G.subgraph(c).copy() for c in biconnected_components(G))``

    See Also
    --------
    is_biconnected
    articulation_points
    biconnected_component_edges
    k_components : this function is a special case where k=2
    bridge_components : similar to this function, but is defined using
        2-edge-connectivity instead of 2-node-connectivity.

    Notes
    -----
    The algorithm to find articulation points and biconnected
    components is implemented using a non-recursive depth-first-search
    (DFS) that keeps track of the highest level that back edges reach
    in the DFS tree.  A node `n` is an articulation point if, and only
    if, there exists a subtree rooted at `n` such that there is no
    back edge from any successor of `n` that links to a predecessor of
    `n` in the DFS tree.  By keeping track of all the edges traversed
    by the DFS we can obtain the biconnected components because all
    edges of a bicomponent will be traversed consecutively between
    articulation points.

    References
    ----------
    .. [1] Hopcroft, J.; Tarjan, R. (1973).
           "Efficient algorithms for graph manipulation".
           Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

    """
    for comp in _biconnected_dfs(G, components=True):
        yield set(chain.from_iterable(comp))


@not_implemented_for("directed")
@nx._dispatch
def articulation_points(G):
    """Yield the articulation points, or cut vertices, of a graph.

    An articulation point or cut vertex is any node whose removal (along with
    all its incident edges) increases the number of connected components of
    a graph.  An undirected connected graph without articulation points is
    biconnected. Articulation points belong to more than one biconnected
    component of a graph.

    Notice that by convention a dyad is considered a biconnected component.

    Parameters
    ----------
    G : NetworkX Graph
        An undirected graph.

    Yields
    ------
    node
        An articulation point in the graph.

    Raises
    ------
    NetworkXNotImplemented
        If the input graph is not undirected.

    Examples
    --------

    >>> G = nx.barbell_graph(4, 2)
    >>> print(nx.is_biconnected(G))
    False
    >>> len(list(nx.articulation_points(G)))
    4
    >>> G.add_edge(2, 8)
    >>> print(nx.is_biconnected(G))
    True
    >>> len(list(nx.articulation_points(G)))
    0

    See Also
    --------
    is_biconnected
    biconnected_components
    biconnected_component_edges

    Notes
    -----
    The algorithm to find articulation points and biconnected
    components is implemented using a non-recursive depth-first-search
    (DFS) that keeps track of the highest level that back edges reach
    in the DFS tree.  A node `n` is an articulation point if, and only
    if, there exists a subtree rooted at `n` such that there is no
    back edge from any successor of `n` that links to a predecessor of
    `n` in the DFS tree.  By keeping track of all the edges traversed
    by the DFS we can obtain the biconnected components because all
    edges of a bicomponent will be traversed consecutively between
    articulation points.

    References
    ----------
    .. [1] Hopcroft, J.; Tarjan, R. (1973).
           "Efficient algorithms for graph manipulation".
           Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

    """
    seen = set()
    for articulation in _biconnected_dfs(G, components=False):
        if articulation not in seen:
            seen.add(articulation)
            yield articulation


@not_implemented_for("directed")
def _biconnected_dfs(G, components=True):
    # depth-first search algorithm to generate articulation points
    # and biconnected components
    visited = set()
    for start in G:
        if start in visited:
            continue
        discovery = {start: 0}  # time of first discovery of node during search
        low = {start: 0}
        root_children = 0
        visited.add(start)
        edge_stack = []
        stack = [(start, start, iter(G[start]))]
        edge_index = {}
        while stack:
            grandparent, parent, children = stack[-1]
            try:
                child = next(children)
                if grandparent == child:
                    continue
                if child in visited:
                    if discovery[child] <= discovery[parent]:  # back edge
                        low[parent] = min(low[parent], discovery[child])
                        if components:
                            edge_index[parent, child] = len(edge_stack)
                            edge_stack.append((parent, child))
                else:
                    low[child] = discovery[child] = len(discovery)
                    visited.add(child)
                    stack.append((parent, child, iter(G[child])))
                    if components:
                        edge_index[parent, child] = len(edge_stack)
                        edge_stack.append((parent, child))

            except StopIteration:
                stack.pop()
                if len(stack) > 1:
                    if low[parent] >= discovery[grandparent]:
                        if components:
                            ind = edge_index[grandparent, parent]
                            yield edge_stack[ind:]
                            del edge_stack[ind:]

                        else:
                            yield grandparent
                    low[grandparent] = min(low[parent], low[grandparent])
                elif stack:  # length 1 so grandparent is root
                    root_children += 1
                    if components:
                        ind = edge_index[grandparent, parent]
                        yield edge_stack[ind:]
                        del edge_stack[ind:]
        if not components:
            # root node is articulation point if it has more than 1 child
            if root_children > 1:
                yield start