File size: 9,960 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""Functions for finding and evaluating cuts in a graph.

"""

from itertools import chain

import networkx as nx

__all__ = [
    "boundary_expansion",
    "conductance",
    "cut_size",
    "edge_expansion",
    "mixing_expansion",
    "node_expansion",
    "normalized_cut_size",
    "volume",
]


# TODO STILL NEED TO UPDATE ALL THE DOCUMENTATION!


@nx._dispatch(edge_attrs="weight")
def cut_size(G, S, T=None, weight=None):
    """Returns the size of the cut between two sets of nodes.

    A *cut* is a partition of the nodes of a graph into two sets. The
    *cut size* is the sum of the weights of the edges "between" the two
    sets of nodes.

    Parameters
    ----------
    G : NetworkX graph

    S : collection
        A collection of nodes in `G`.

    T : collection
        A collection of nodes in `G`. If not specified, this is taken to
        be the set complement of `S`.

    weight : object
        Edge attribute key to use as weight. If not specified, edges
        have weight one.

    Returns
    -------
    number
        Total weight of all edges from nodes in set `S` to nodes in
        set `T` (and, in the case of directed graphs, all edges from
        nodes in `T` to nodes in `S`).

    Examples
    --------
    In the graph with two cliques joined by a single edges, the natural
    bipartition of the graph into two blocks, one for each clique,
    yields a cut of weight one::

        >>> G = nx.barbell_graph(3, 0)
        >>> S = {0, 1, 2}
        >>> T = {3, 4, 5}
        >>> nx.cut_size(G, S, T)
        1

    Each parallel edge in a multigraph is counted when determining the
    cut size::

        >>> G = nx.MultiGraph(["ab", "ab"])
        >>> S = {"a"}
        >>> T = {"b"}
        >>> nx.cut_size(G, S, T)
        2

    Notes
    -----
    In a multigraph, the cut size is the total weight of edges including
    multiplicity.

    """
    edges = nx.edge_boundary(G, S, T, data=weight, default=1)
    if G.is_directed():
        edges = chain(edges, nx.edge_boundary(G, T, S, data=weight, default=1))
    return sum(weight for u, v, weight in edges)


@nx._dispatch(edge_attrs="weight")
def volume(G, S, weight=None):
    """Returns the volume of a set of nodes.

    The *volume* of a set *S* is the sum of the (out-)degrees of nodes
    in *S* (taking into account parallel edges in multigraphs). [1]

    Parameters
    ----------
    G : NetworkX graph

    S : collection
        A collection of nodes in `G`.

    weight : object
        Edge attribute key to use as weight. If not specified, edges
        have weight one.

    Returns
    -------
    number
        The volume of the set of nodes represented by `S` in the graph
        `G`.

    See also
    --------
    conductance
    cut_size
    edge_expansion
    edge_boundary
    normalized_cut_size

    References
    ----------
    .. [1] David Gleich.
           *Hierarchical Directed Spectral Graph Partitioning*.
           <https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>

    """
    degree = G.out_degree if G.is_directed() else G.degree
    return sum(d for v, d in degree(S, weight=weight))


@nx._dispatch(edge_attrs="weight")
def normalized_cut_size(G, S, T=None, weight=None):
    """Returns the normalized size of the cut between two sets of nodes.

    The *normalized cut size* is the cut size times the sum of the
    reciprocal sizes of the volumes of the two sets. [1]

    Parameters
    ----------
    G : NetworkX graph

    S : collection
        A collection of nodes in `G`.

    T : collection
        A collection of nodes in `G`.

    weight : object
        Edge attribute key to use as weight. If not specified, edges
        have weight one.

    Returns
    -------
    number
        The normalized cut size between the two sets `S` and `T`.

    Notes
    -----
    In a multigraph, the cut size is the total weight of edges including
    multiplicity.

    See also
    --------
    conductance
    cut_size
    edge_expansion
    volume

    References
    ----------
    .. [1] David Gleich.
           *Hierarchical Directed Spectral Graph Partitioning*.
           <https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>

    """
    if T is None:
        T = set(G) - set(S)
    num_cut_edges = cut_size(G, S, T=T, weight=weight)
    volume_S = volume(G, S, weight=weight)
    volume_T = volume(G, T, weight=weight)
    return num_cut_edges * ((1 / volume_S) + (1 / volume_T))


@nx._dispatch(edge_attrs="weight")
def conductance(G, S, T=None, weight=None):
    """Returns the conductance of two sets of nodes.

    The *conductance* is the quotient of the cut size and the smaller of
    the volumes of the two sets. [1]

    Parameters
    ----------
    G : NetworkX graph

    S : collection
        A collection of nodes in `G`.

    T : collection
        A collection of nodes in `G`.

    weight : object
        Edge attribute key to use as weight. If not specified, edges
        have weight one.

    Returns
    -------
    number
        The conductance between the two sets `S` and `T`.

    See also
    --------
    cut_size
    edge_expansion
    normalized_cut_size
    volume

    References
    ----------
    .. [1] David Gleich.
           *Hierarchical Directed Spectral Graph Partitioning*.
           <https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>

    """
    if T is None:
        T = set(G) - set(S)
    num_cut_edges = cut_size(G, S, T, weight=weight)
    volume_S = volume(G, S, weight=weight)
    volume_T = volume(G, T, weight=weight)
    return num_cut_edges / min(volume_S, volume_T)


@nx._dispatch(edge_attrs="weight")
def edge_expansion(G, S, T=None, weight=None):
    """Returns the edge expansion between two node sets.

    The *edge expansion* is the quotient of the cut size and the smaller
    of the cardinalities of the two sets. [1]

    Parameters
    ----------
    G : NetworkX graph

    S : collection
        A collection of nodes in `G`.

    T : collection
        A collection of nodes in `G`.

    weight : object
        Edge attribute key to use as weight. If not specified, edges
        have weight one.

    Returns
    -------
    number
        The edge expansion between the two sets `S` and `T`.

    See also
    --------
    boundary_expansion
    mixing_expansion
    node_expansion

    References
    ----------
    .. [1] Fan Chung.
           *Spectral Graph Theory*.
           (CBMS Regional Conference Series in Mathematics, No. 92),
           American Mathematical Society, 1997, ISBN 0-8218-0315-8
           <http://www.math.ucsd.edu/~fan/research/revised.html>

    """
    if T is None:
        T = set(G) - set(S)
    num_cut_edges = cut_size(G, S, T=T, weight=weight)
    return num_cut_edges / min(len(S), len(T))


@nx._dispatch(edge_attrs="weight")
def mixing_expansion(G, S, T=None, weight=None):
    """Returns the mixing expansion between two node sets.

    The *mixing expansion* is the quotient of the cut size and twice the
    number of edges in the graph. [1]

    Parameters
    ----------
    G : NetworkX graph

    S : collection
        A collection of nodes in `G`.

    T : collection
        A collection of nodes in `G`.

    weight : object
        Edge attribute key to use as weight. If not specified, edges
        have weight one.

    Returns
    -------
    number
        The mixing expansion between the two sets `S` and `T`.

    See also
    --------
    boundary_expansion
    edge_expansion
    node_expansion

    References
    ----------
    .. [1] Vadhan, Salil P.
           "Pseudorandomness."
           *Foundations and Trends
           in Theoretical Computer Science* 7.1–3 (2011): 1–336.
           <https://doi.org/10.1561/0400000010>

    """
    num_cut_edges = cut_size(G, S, T=T, weight=weight)
    num_total_edges = G.number_of_edges()
    return num_cut_edges / (2 * num_total_edges)


# TODO What is the generalization to two arguments, S and T? Does the
# denominator become `min(len(S), len(T))`?
@nx._dispatch
def node_expansion(G, S):
    """Returns the node expansion of the set `S`.

    The *node expansion* is the quotient of the size of the node
    boundary of *S* and the cardinality of *S*. [1]

    Parameters
    ----------
    G : NetworkX graph

    S : collection
        A collection of nodes in `G`.

    Returns
    -------
    number
        The node expansion of the set `S`.

    See also
    --------
    boundary_expansion
    edge_expansion
    mixing_expansion

    References
    ----------
    .. [1] Vadhan, Salil P.
           "Pseudorandomness."
           *Foundations and Trends
           in Theoretical Computer Science* 7.1–3 (2011): 1–336.
           <https://doi.org/10.1561/0400000010>

    """
    neighborhood = set(chain.from_iterable(G.neighbors(v) for v in S))
    return len(neighborhood) / len(S)


# TODO What is the generalization to two arguments, S and T? Does the
# denominator become `min(len(S), len(T))`?
@nx._dispatch
def boundary_expansion(G, S):
    """Returns the boundary expansion of the set `S`.

    The *boundary expansion* is the quotient of the size
    of the node boundary and the cardinality of *S*. [1]

    Parameters
    ----------
    G : NetworkX graph

    S : collection
        A collection of nodes in `G`.

    Returns
    -------
    number
        The boundary expansion of the set `S`.

    See also
    --------
    edge_expansion
    mixing_expansion
    node_expansion

    References
    ----------
    .. [1] Vadhan, Salil P.
           "Pseudorandomness."
           *Foundations and Trends in Theoretical Computer Science*
           7.1–3 (2011): 1–336.
           <https://doi.org/10.1561/0400000010>

    """
    return len(nx.node_boundary(G, S)) / len(S)