File size: 43,080 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
"""
========================
Cycle finding algorithms
========================
"""

from collections import Counter, defaultdict
from itertools import combinations, product
from math import inf

import networkx as nx
from networkx.utils import not_implemented_for, pairwise

__all__ = [
    "cycle_basis",
    "simple_cycles",
    "recursive_simple_cycles",
    "find_cycle",
    "minimum_cycle_basis",
    "chordless_cycles",
    "girth",
]


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def cycle_basis(G, root=None):
    """Returns a list of cycles which form a basis for cycles of G.

    A basis for cycles of a network is a minimal collection of
    cycles such that any cycle in the network can be written
    as a sum of cycles in the basis.  Here summation of cycles
    is defined as "exclusive or" of the edges. Cycle bases are
    useful, e.g. when deriving equations for electric circuits
    using Kirchhoff's Laws.

    Parameters
    ----------
    G : NetworkX Graph
    root : node, optional
       Specify starting node for basis.

    Returns
    -------
    A list of cycle lists.  Each cycle list is a list of nodes
    which forms a cycle (loop) in G.

    Examples
    --------
    >>> G = nx.Graph()
    >>> nx.add_cycle(G, [0, 1, 2, 3])
    >>> nx.add_cycle(G, [0, 3, 4, 5])
    >>> nx.cycle_basis(G, 0)
    [[3, 4, 5, 0], [1, 2, 3, 0]]

    Notes
    -----
    This is adapted from algorithm CACM 491 [1]_.

    References
    ----------
    .. [1] Paton, K. An algorithm for finding a fundamental set of
       cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.

    See Also
    --------
    simple_cycles
    """
    gnodes = dict.fromkeys(G)  # set-like object that maintains node order
    cycles = []
    while gnodes:  # loop over connected components
        if root is None:
            root = gnodes.popitem()[0]
        stack = [root]
        pred = {root: root}
        used = {root: set()}
        while stack:  # walk the spanning tree finding cycles
            z = stack.pop()  # use last-in so cycles easier to find
            zused = used[z]
            for nbr in G[z]:
                if nbr not in used:  # new node
                    pred[nbr] = z
                    stack.append(nbr)
                    used[nbr] = {z}
                elif nbr == z:  # self loops
                    cycles.append([z])
                elif nbr not in zused:  # found a cycle
                    pn = used[nbr]
                    cycle = [nbr, z]
                    p = pred[z]
                    while p not in pn:
                        cycle.append(p)
                        p = pred[p]
                    cycle.append(p)
                    cycles.append(cycle)
                    used[nbr].add(z)
        for node in pred:
            gnodes.pop(node, None)
        root = None
    return cycles


@nx._dispatch
def simple_cycles(G, length_bound=None):
    """Find simple cycles (elementary circuits) of a graph.

    A `simple cycle`, or `elementary circuit`, is a closed path where
    no node appears twice.  In a directed graph, two simple cycles are distinct
    if they are not cyclic permutations of each other.  In an undirected graph,
    two simple cycles are distinct if they are not cyclic permutations of each
    other nor of the other's reversal.

    Optionally, the cycles are bounded in length.  In the unbounded case, we use
    a nonrecursive, iterator/generator version of Johnson's algorithm [1]_.  In
    the bounded case, we use a version of the algorithm of Gupta and
    Suzumura[2]_. There may be better algorithms for some cases [3]_ [4]_ [5]_.

    The algorithms of Johnson, and Gupta and Suzumura, are enhanced by some
    well-known preprocessing techniques.  When G is directed, we restrict our
    attention to strongly connected components of G, generate all simple cycles
    containing a certain node, remove that node, and further decompose the
    remainder into strongly connected components.  When G is undirected, we
    restrict our attention to biconnected components, generate all simple cycles
    containing a particular edge, remove that edge, and further decompose the
    remainder into biconnected components.

    Note that multigraphs are supported by this function -- and in undirected
    multigraphs, a pair of parallel edges is considered a cycle of length 2.
    Likewise, self-loops are considered to be cycles of length 1.  We define
    cycles as sequences of nodes; so the presence of loops and parallel edges
    does not change the number of simple cycles in a graph.

    Parameters
    ----------
    G : NetworkX DiGraph
       A directed graph

    length_bound : int or None, optional (default=None)
       If length_bound is an int, generate all simple cycles of G with length at
       most length_bound.  Otherwise, generate all simple cycles of G.

    Yields
    ------
    list of nodes
       Each cycle is represented by a list of nodes along the cycle.

    Examples
    --------
    >>> edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
    >>> G = nx.DiGraph(edges)
    >>> sorted(nx.simple_cycles(G))
    [[0], [0, 1, 2], [0, 2], [1, 2], [2]]

    To filter the cycles so that they don't include certain nodes or edges,
    copy your graph and eliminate those nodes or edges before calling.
    For example, to exclude self-loops from the above example:

    >>> H = G.copy()
    >>> H.remove_edges_from(nx.selfloop_edges(G))
    >>> sorted(nx.simple_cycles(H))
    [[0, 1, 2], [0, 2], [1, 2]]

    Notes
    -----
    When length_bound is None, the time complexity is $O((n+e)(c+1))$ for $n$
    nodes, $e$ edges and $c$ simple circuits.  Otherwise, when length_bound > 1,
    the time complexity is $O((c+n)(k-1)d^k)$ where $d$ is the average degree of
    the nodes of G and $k$ = length_bound.

    Raises
    ------
    ValueError
        when length_bound < 0.

    References
    ----------
    .. [1] Finding all the elementary circuits of a directed graph.
       D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975.
       https://doi.org/10.1137/0204007
    .. [2] Finding All Bounded-Length Simple Cycles in a Directed Graph
       A. Gupta and T. Suzumura https://arxiv.org/abs/2105.10094
    .. [3] Enumerating the cycles of a digraph: a new preprocessing strategy.
       G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982.
    .. [4] A search strategy for the elementary cycles of a directed graph.
       J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS,
       v. 16, no. 2, 192-204, 1976.
    .. [5] Optimal Listing of Cycles and st-Paths in Undirected Graphs
        R. Ferreira and R. Grossi and A. Marino and N. Pisanti and R. Rizzi and
        G. Sacomoto https://arxiv.org/abs/1205.2766

    See Also
    --------
    cycle_basis
    chordless_cycles
    """

    if length_bound is not None:
        if length_bound == 0:
            return
        elif length_bound < 0:
            raise ValueError("length bound must be non-negative")

    directed = G.is_directed()
    yield from ([v] for v, Gv in G.adj.items() if v in Gv)

    if length_bound is not None and length_bound == 1:
        return

    if G.is_multigraph() and not directed:
        visited = set()
        for u, Gu in G.adj.items():
            multiplicity = ((v, len(Guv)) for v, Guv in Gu.items() if v in visited)
            yield from ([u, v] for v, m in multiplicity if m > 1)
            visited.add(u)

    # explicitly filter out loops; implicitly filter out parallel edges
    if directed:
        G = nx.DiGraph((u, v) for u, Gu in G.adj.items() for v in Gu if v != u)
    else:
        G = nx.Graph((u, v) for u, Gu in G.adj.items() for v in Gu if v != u)

    # this case is not strictly necessary but improves performance
    if length_bound is not None and length_bound == 2:
        if directed:
            visited = set()
            for u, Gu in G.adj.items():
                yield from (
                    [v, u] for v in visited.intersection(Gu) if G.has_edge(v, u)
                )
                visited.add(u)
        return

    if directed:
        yield from _directed_cycle_search(G, length_bound)
    else:
        yield from _undirected_cycle_search(G, length_bound)


def _directed_cycle_search(G, length_bound):
    """A dispatch function for `simple_cycles` for directed graphs.

    We generate all cycles of G through binary partition.

        1. Pick a node v in G which belongs to at least one cycle
            a. Generate all cycles of G which contain the node v.
            b. Recursively generate all cycles of G \\ v.

    This is accomplished through the following:

        1. Compute the strongly connected components SCC of G.
        2. Select and remove a biconnected component C from BCC.  Select a
           non-tree edge (u, v) of a depth-first search of G[C].
        3. For each simple cycle P containing v in G[C], yield P.
        4. Add the biconnected components of G[C \\ v] to BCC.

    If the parameter length_bound is not None, then step 3 will be limited to
    simple cycles of length at most length_bound.

    Parameters
    ----------
    G : NetworkX DiGraph
       A directed graph

    length_bound : int or None
       If length_bound is an int, generate all simple cycles of G with length at most length_bound.
       Otherwise, generate all simple cycles of G.

    Yields
    ------
    list of nodes
       Each cycle is represented by a list of nodes along the cycle.
    """

    scc = nx.strongly_connected_components
    components = [c for c in scc(G) if len(c) >= 2]
    while components:
        c = components.pop()
        Gc = G.subgraph(c)
        v = next(iter(c))
        if length_bound is None:
            yield from _johnson_cycle_search(Gc, [v])
        else:
            yield from _bounded_cycle_search(Gc, [v], length_bound)
        # delete v after searching G, to make sure we can find v
        G.remove_node(v)
        components.extend(c for c in scc(Gc) if len(c) >= 2)


def _undirected_cycle_search(G, length_bound):
    """A dispatch function for `simple_cycles` for undirected graphs.

    We generate all cycles of G through binary partition.

        1. Pick an edge (u, v) in G which belongs to at least one cycle
            a. Generate all cycles of G which contain the edge (u, v)
            b. Recursively generate all cycles of G \\ (u, v)

    This is accomplished through the following:

        1. Compute the biconnected components BCC of G.
        2. Select and remove a biconnected component C from BCC.  Select a
           non-tree edge (u, v) of a depth-first search of G[C].
        3. For each (v -> u) path P remaining in G[C] \\ (u, v), yield P.
        4. Add the biconnected components of G[C] \\ (u, v) to BCC.

    If the parameter length_bound is not None, then step 3 will be limited to simple paths
    of length at most length_bound.

    Parameters
    ----------
    G : NetworkX Graph
       An undirected graph

    length_bound : int or None
       If length_bound is an int, generate all simple cycles of G with length at most length_bound.
       Otherwise, generate all simple cycles of G.

    Yields
    ------
    list of nodes
       Each cycle is represented by a list of nodes along the cycle.
    """

    bcc = nx.biconnected_components
    components = [c for c in bcc(G) if len(c) >= 3]
    while components:
        c = components.pop()
        Gc = G.subgraph(c)
        uv = list(next(iter(Gc.edges)))
        G.remove_edge(*uv)
        # delete (u, v) before searching G, to avoid fake 3-cycles [u, v, u]
        if length_bound is None:
            yield from _johnson_cycle_search(Gc, uv)
        else:
            yield from _bounded_cycle_search(Gc, uv, length_bound)
        components.extend(c for c in bcc(Gc) if len(c) >= 3)


class _NeighborhoodCache(dict):
    """Very lightweight graph wrapper which caches neighborhoods as list.

    This dict subclass uses the __missing__ functionality to query graphs for
    their neighborhoods, and store the result as a list.  This is used to avoid
    the performance penalty incurred by subgraph views.
    """

    def __init__(self, G):
        self.G = G

    def __missing__(self, v):
        Gv = self[v] = list(self.G[v])
        return Gv


def _johnson_cycle_search(G, path):
    """The main loop of the cycle-enumeration algorithm of Johnson.

    Parameters
    ----------
    G : NetworkX Graph or DiGraph
       A graph

    path : list
       A cycle prefix.  All cycles generated will begin with this prefix.

    Yields
    ------
    list of nodes
       Each cycle is represented by a list of nodes along the cycle.

    References
    ----------
        .. [1] Finding all the elementary circuits of a directed graph.
       D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975.
       https://doi.org/10.1137/0204007

    """

    G = _NeighborhoodCache(G)
    blocked = set(path)
    B = defaultdict(set)  # graph portions that yield no elementary circuit
    start = path[0]
    stack = [iter(G[path[-1]])]
    closed = [False]
    while stack:
        nbrs = stack[-1]
        for w in nbrs:
            if w == start:
                yield path[:]
                closed[-1] = True
            elif w not in blocked:
                path.append(w)
                closed.append(False)
                stack.append(iter(G[w]))
                blocked.add(w)
                break
        else:  # no more nbrs
            stack.pop()
            v = path.pop()
            if closed.pop():
                if closed:
                    closed[-1] = True
                unblock_stack = {v}
                while unblock_stack:
                    u = unblock_stack.pop()
                    if u in blocked:
                        blocked.remove(u)
                        unblock_stack.update(B[u])
                        B[u].clear()
            else:
                for w in G[v]:
                    B[w].add(v)


def _bounded_cycle_search(G, path, length_bound):
    """The main loop of the cycle-enumeration algorithm of Gupta and Suzumura.

    Parameters
    ----------
    G : NetworkX Graph or DiGraph
       A graph

    path : list
       A cycle prefix.  All cycles generated will begin with this prefix.

    length_bound: int
        A length bound.  All cycles generated will have length at most length_bound.

    Yields
    ------
    list of nodes
       Each cycle is represented by a list of nodes along the cycle.

    References
    ----------
    .. [1] Finding All Bounded-Length Simple Cycles in a Directed Graph
       A. Gupta and T. Suzumura https://arxiv.org/abs/2105.10094

    """
    G = _NeighborhoodCache(G)
    lock = {v: 0 for v in path}
    B = defaultdict(set)
    start = path[0]
    stack = [iter(G[path[-1]])]
    blen = [length_bound]
    while stack:
        nbrs = stack[-1]
        for w in nbrs:
            if w == start:
                yield path[:]
                blen[-1] = 1
            elif len(path) < lock.get(w, length_bound):
                path.append(w)
                blen.append(length_bound)
                lock[w] = len(path)
                stack.append(iter(G[w]))
                break
        else:
            stack.pop()
            v = path.pop()
            bl = blen.pop()
            if blen:
                blen[-1] = min(blen[-1], bl)
            if bl < length_bound:
                relax_stack = [(bl, v)]
                while relax_stack:
                    bl, u = relax_stack.pop()
                    if lock.get(u, length_bound) < length_bound - bl + 1:
                        lock[u] = length_bound - bl + 1
                        relax_stack.extend((bl + 1, w) for w in B[u].difference(path))
            else:
                for w in G[v]:
                    B[w].add(v)


@nx._dispatch
def chordless_cycles(G, length_bound=None):
    """Find simple chordless cycles of a graph.

    A `simple cycle` is a closed path where no node appears twice.  In a simple
    cycle, a `chord` is an additional edge between two nodes in the cycle.  A
    `chordless cycle` is a simple cycle without chords.  Said differently, a
    chordless cycle is a cycle C in a graph G where the number of edges in the
    induced graph G[C] is equal to the length of `C`.

    Note that some care must be taken in the case that G is not a simple graph
    nor a simple digraph.  Some authors limit the definition of chordless cycles
    to have a prescribed minimum length; we do not.

        1. We interpret self-loops to be chordless cycles, except in multigraphs
           with multiple loops in parallel.  Likewise, in a chordless cycle of
           length greater than 1, there can be no nodes with self-loops.

        2. We interpret directed two-cycles to be chordless cycles, except in
           multi-digraphs when any edge in a two-cycle has a parallel copy.

        3. We interpret parallel pairs of undirected edges as two-cycles, except
           when a third (or more) parallel edge exists between the two nodes.

        4. Generalizing the above, edges with parallel clones may not occur in
           chordless cycles.

    In a directed graph, two chordless cycles are distinct if they are not
    cyclic permutations of each other.  In an undirected graph, two chordless
    cycles are distinct if they are not cyclic permutations of each other nor of
    the other's reversal.

    Optionally, the cycles are bounded in length.

    We use an algorithm strongly inspired by that of Dias et al [1]_.  It has
    been modified in the following ways:

        1. Recursion is avoided, per Python's limitations

        2. The labeling function is not necessary, because the starting paths
            are chosen (and deleted from the host graph) to prevent multiple
            occurrences of the same path

        3. The search is optionally bounded at a specified length

        4. Support for directed graphs is provided by extending cycles along
            forward edges, and blocking nodes along forward and reverse edges

        5. Support for multigraphs is provided by omitting digons from the set
            of forward edges

    Parameters
    ----------
    G : NetworkX DiGraph
       A directed graph

    length_bound : int or None, optional (default=None)
       If length_bound is an int, generate all simple cycles of G with length at
       most length_bound.  Otherwise, generate all simple cycles of G.

    Yields
    ------
    list of nodes
       Each cycle is represented by a list of nodes along the cycle.

    Examples
    --------
    >>> sorted(list(nx.chordless_cycles(nx.complete_graph(4))))
    [[1, 0, 2], [1, 0, 3], [2, 0, 3], [2, 1, 3]]

    Notes
    -----
    When length_bound is None, and the graph is simple, the time complexity is
    $O((n+e)(c+1))$ for $n$ nodes, $e$ edges and $c$ chordless cycles.

    Raises
    ------
    ValueError
        when length_bound < 0.

    References
    ----------
    .. [1] Efficient enumeration of chordless cycles
       E. Dias and D. Castonguay and H. Longo and W.A.R. Jradi
       https://arxiv.org/abs/1309.1051

    See Also
    --------
    simple_cycles
    """

    if length_bound is not None:
        if length_bound == 0:
            return
        elif length_bound < 0:
            raise ValueError("length bound must be non-negative")

    directed = G.is_directed()
    multigraph = G.is_multigraph()

    if multigraph:
        yield from ([v] for v, Gv in G.adj.items() if len(Gv.get(v, ())) == 1)
    else:
        yield from ([v] for v, Gv in G.adj.items() if v in Gv)

    if length_bound is not None and length_bound == 1:
        return

    # Nodes with loops cannot belong to longer cycles.  Let's delete them here.
    # also, we implicitly reduce the multiplicity of edges down to 1 in the case
    # of multiedges.
    if directed:
        F = nx.DiGraph((u, v) for u, Gu in G.adj.items() if u not in Gu for v in Gu)
        B = F.to_undirected(as_view=False)
    else:
        F = nx.Graph((u, v) for u, Gu in G.adj.items() if u not in Gu for v in Gu)
        B = None

    # If we're given a multigraph, we have a few cases to consider with parallel
    # edges.
    #
    # 1. If we have 2 or more edges in parallel between the nodes (u, v), we
    #    must not construct longer cycles along (u, v).
    # 2. If G is not directed, then a pair of parallel edges between (u, v) is a
    #    chordless cycle unless there exists a third (or more) parallel edge.
    # 3. If G is directed, then parallel edges do not form cycles, but do
    #    preclude back-edges from forming cycles (handled in the next section),
    #    Thus, if an edge (u, v) is duplicated and the reverse (v, u) is also
    #    present, then we remove both from F.
    #
    # In directed graphs, we need to consider both directions that edges can
    # take, so iterate over all edges (u, v) and possibly (v, u).  In undirected
    # graphs, we need to be a little careful to only consider every edge once,
    # so we use a "visited" set to emulate node-order comparisons.

    if multigraph:
        if not directed:
            B = F.copy()
            visited = set()
        for u, Gu in G.adj.items():
            if directed:
                multiplicity = ((v, len(Guv)) for v, Guv in Gu.items())
                for v, m in multiplicity:
                    if m > 1:
                        F.remove_edges_from(((u, v), (v, u)))
            else:
                multiplicity = ((v, len(Guv)) for v, Guv in Gu.items() if v in visited)
                for v, m in multiplicity:
                    if m == 2:
                        yield [u, v]
                    if m > 1:
                        F.remove_edge(u, v)
                visited.add(u)

    # If we're given a directed graphs, we need to think about digons.  If we
    # have two edges (u, v) and (v, u), then that's a two-cycle.  If either edge
    # was duplicated above, then we removed both from F.  So, any digons we find
    # here are chordless.  After finding digons, we remove their edges from F
    # to avoid traversing them in the search for chordless cycles.
    if directed:
        for u, Fu in F.adj.items():
            digons = [[u, v] for v in Fu if F.has_edge(v, u)]
            yield from digons
            F.remove_edges_from(digons)
            F.remove_edges_from(e[::-1] for e in digons)

    if length_bound is not None and length_bound == 2:
        return

    # Now, we prepare to search for cycles.  We have removed all cycles of
    # lengths 1 and 2, so F is a simple graph or simple digraph.  We repeatedly
    # separate digraphs into their strongly connected components, and undirected
    # graphs into their biconnected components.  For each component, we pick a
    # node v, search for chordless cycles based at each "stem" (u, v, w), and
    # then remove v from that component before separating the graph again.
    if directed:
        separate = nx.strongly_connected_components

        # Directed stems look like (u -> v -> w), so we use the product of
        # predecessors of v with successors of v.
        def stems(C, v):
            for u, w in product(C.pred[v], C.succ[v]):
                if not G.has_edge(u, w):  # omit stems with acyclic chords
                    yield [u, v, w], F.has_edge(w, u)

    else:
        separate = nx.biconnected_components

        # Undirected stems look like (u ~ v ~ w), but we must not also search
        # (w ~ v ~ u), so we use combinations of v's neighbors of length 2.
        def stems(C, v):
            yield from (([u, v, w], F.has_edge(w, u)) for u, w in combinations(C[v], 2))

    components = [c for c in separate(F) if len(c) > 2]
    while components:
        c = components.pop()
        v = next(iter(c))
        Fc = F.subgraph(c)
        Fcc = Bcc = None
        for S, is_triangle in stems(Fc, v):
            if is_triangle:
                yield S
            else:
                if Fcc is None:
                    Fcc = _NeighborhoodCache(Fc)
                    Bcc = Fcc if B is None else _NeighborhoodCache(B.subgraph(c))
                yield from _chordless_cycle_search(Fcc, Bcc, S, length_bound)

        components.extend(c for c in separate(F.subgraph(c - {v})) if len(c) > 2)


def _chordless_cycle_search(F, B, path, length_bound):
    """The main loop for chordless cycle enumeration.

    This algorithm is strongly inspired by that of Dias et al [1]_.  It has been
    modified in the following ways:

        1. Recursion is avoided, per Python's limitations

        2. The labeling function is not necessary, because the starting paths
            are chosen (and deleted from the host graph) to prevent multiple
            occurrences of the same path

        3. The search is optionally bounded at a specified length

        4. Support for directed graphs is provided by extending cycles along
            forward edges, and blocking nodes along forward and reverse edges

        5. Support for multigraphs is provided by omitting digons from the set
            of forward edges

    Parameters
    ----------
    F : _NeighborhoodCache
       A graph of forward edges to follow in constructing cycles

    B : _NeighborhoodCache
       A graph of blocking edges to prevent the production of chordless cycles

    path : list
       A cycle prefix.  All cycles generated will begin with this prefix.

    length_bound : int
       A length bound.  All cycles generated will have length at most length_bound.


    Yields
    ------
    list of nodes
       Each cycle is represented by a list of nodes along the cycle.

    References
    ----------
    .. [1] Efficient enumeration of chordless cycles
       E. Dias and D. Castonguay and H. Longo and W.A.R. Jradi
       https://arxiv.org/abs/1309.1051

    """
    blocked = defaultdict(int)
    target = path[0]
    blocked[path[1]] = 1
    for w in path[1:]:
        for v in B[w]:
            blocked[v] += 1

    stack = [iter(F[path[2]])]
    while stack:
        nbrs = stack[-1]
        for w in nbrs:
            if blocked[w] == 1 and (length_bound is None or len(path) < length_bound):
                Fw = F[w]
                if target in Fw:
                    yield path + [w]
                else:
                    Bw = B[w]
                    if target in Bw:
                        continue
                    for v in Bw:
                        blocked[v] += 1
                    path.append(w)
                    stack.append(iter(Fw))
                    break
        else:
            stack.pop()
            for v in B[path.pop()]:
                blocked[v] -= 1


@not_implemented_for("undirected")
@nx._dispatch
def recursive_simple_cycles(G):
    """Find simple cycles (elementary circuits) of a directed graph.

    A `simple cycle`, or `elementary circuit`, is a closed path where
    no node appears twice. Two elementary circuits are distinct if they
    are not cyclic permutations of each other.

    This version uses a recursive algorithm to build a list of cycles.
    You should probably use the iterator version called simple_cycles().
    Warning: This recursive version uses lots of RAM!
    It appears in NetworkX for pedagogical value.

    Parameters
    ----------
    G : NetworkX DiGraph
       A directed graph

    Returns
    -------
    A list of cycles, where each cycle is represented by a list of nodes
    along the cycle.

    Example:

    >>> edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
    >>> G = nx.DiGraph(edges)
    >>> nx.recursive_simple_cycles(G)
    [[0], [2], [0, 1, 2], [0, 2], [1, 2]]

    Notes
    -----
    The implementation follows pp. 79-80 in [1]_.

    The time complexity is $O((n+e)(c+1))$ for $n$ nodes, $e$ edges and $c$
    elementary circuits.

    References
    ----------
    .. [1] Finding all the elementary circuits of a directed graph.
       D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975.
       https://doi.org/10.1137/0204007

    See Also
    --------
    simple_cycles, cycle_basis
    """

    # Jon Olav Vik, 2010-08-09
    def _unblock(thisnode):
        """Recursively unblock and remove nodes from B[thisnode]."""
        if blocked[thisnode]:
            blocked[thisnode] = False
            while B[thisnode]:
                _unblock(B[thisnode].pop())

    def circuit(thisnode, startnode, component):
        closed = False  # set to True if elementary path is closed
        path.append(thisnode)
        blocked[thisnode] = True
        for nextnode in component[thisnode]:  # direct successors of thisnode
            if nextnode == startnode:
                result.append(path[:])
                closed = True
            elif not blocked[nextnode]:
                if circuit(nextnode, startnode, component):
                    closed = True
        if closed:
            _unblock(thisnode)
        else:
            for nextnode in component[thisnode]:
                if thisnode not in B[nextnode]:  # TODO: use set for speedup?
                    B[nextnode].append(thisnode)
        path.pop()  # remove thisnode from path
        return closed

    path = []  # stack of nodes in current path
    blocked = defaultdict(bool)  # vertex: blocked from search?
    B = defaultdict(list)  # graph portions that yield no elementary circuit
    result = []  # list to accumulate the circuits found

    # Johnson's algorithm exclude self cycle edges like (v, v)
    # To be backward compatible, we record those cycles in advance
    # and then remove from subG
    for v in G:
        if G.has_edge(v, v):
            result.append([v])
            G.remove_edge(v, v)

    # Johnson's algorithm requires some ordering of the nodes.
    # They might not be sortable so we assign an arbitrary ordering.
    ordering = dict(zip(G, range(len(G))))
    for s in ordering:
        # Build the subgraph induced by s and following nodes in the ordering
        subgraph = G.subgraph(node for node in G if ordering[node] >= ordering[s])
        # Find the strongly connected component in the subgraph
        # that contains the least node according to the ordering
        strongcomp = nx.strongly_connected_components(subgraph)
        mincomp = min(strongcomp, key=lambda ns: min(ordering[n] for n in ns))
        component = G.subgraph(mincomp)
        if len(component) > 1:
            # smallest node in the component according to the ordering
            startnode = min(component, key=ordering.__getitem__)
            for node in component:
                blocked[node] = False
                B[node][:] = []
            dummy = circuit(startnode, startnode, component)
    return result


@nx._dispatch
def find_cycle(G, source=None, orientation=None):
    """Returns a cycle found via depth-first traversal.

    The cycle is a list of edges indicating the cyclic path.
    Orientation of directed edges is controlled by `orientation`.

    Parameters
    ----------
    G : graph
        A directed/undirected graph/multigraph.

    source : node, list of nodes
        The node from which the traversal begins. If None, then a source
        is chosen arbitrarily and repeatedly until all edges from each node in
        the graph are searched.

    orientation : None | 'original' | 'reverse' | 'ignore' (default: None)
        For directed graphs and directed multigraphs, edge traversals need not
        respect the original orientation of the edges.
        When set to 'reverse' every edge is traversed in the reverse direction.
        When set to 'ignore', every edge is treated as undirected.
        When set to 'original', every edge is treated as directed.
        In all three cases, the yielded edge tuples add a last entry to
        indicate the direction in which that edge was traversed.
        If orientation is None, the yielded edge has no direction indicated.
        The direction is respected, but not reported.

    Returns
    -------
    edges : directed edges
        A list of directed edges indicating the path taken for the loop.
        If no cycle is found, then an exception is raised.
        For graphs, an edge is of the form `(u, v)` where `u` and `v`
        are the tail and head of the edge as determined by the traversal.
        For multigraphs, an edge is of the form `(u, v, key)`, where `key` is
        the key of the edge. When the graph is directed, then `u` and `v`
        are always in the order of the actual directed edge.
        If orientation is not None then the edge tuple is extended to include
        the direction of traversal ('forward' or 'reverse') on that edge.

    Raises
    ------
    NetworkXNoCycle
        If no cycle was found.

    Examples
    --------
    In this example, we construct a DAG and find, in the first call, that there
    are no directed cycles, and so an exception is raised. In the second call,
    we ignore edge orientations and find that there is an undirected cycle.
    Note that the second call finds a directed cycle while effectively
    traversing an undirected graph, and so, we found an "undirected cycle".
    This means that this DAG structure does not form a directed tree (which
    is also known as a polytree).

    >>> G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
    >>> nx.find_cycle(G, orientation="original")
    Traceback (most recent call last):
        ...
    networkx.exception.NetworkXNoCycle: No cycle found.
    >>> list(nx.find_cycle(G, orientation="ignore"))
    [(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')]

    See Also
    --------
    simple_cycles
    """
    if not G.is_directed() or orientation in (None, "original"):

        def tailhead(edge):
            return edge[:2]

    elif orientation == "reverse":

        def tailhead(edge):
            return edge[1], edge[0]

    elif orientation == "ignore":

        def tailhead(edge):
            if edge[-1] == "reverse":
                return edge[1], edge[0]
            return edge[:2]

    explored = set()
    cycle = []
    final_node = None
    for start_node in G.nbunch_iter(source):
        if start_node in explored:
            # No loop is possible.
            continue

        edges = []
        # All nodes seen in this iteration of edge_dfs
        seen = {start_node}
        # Nodes in active path.
        active_nodes = {start_node}
        previous_head = None

        for edge in nx.edge_dfs(G, start_node, orientation):
            # Determine if this edge is a continuation of the active path.
            tail, head = tailhead(edge)
            if head in explored:
                # Then we've already explored it. No loop is possible.
                continue
            if previous_head is not None and tail != previous_head:
                # This edge results from backtracking.
                # Pop until we get a node whose head equals the current tail.
                # So for example, we might have:
                #  (0, 1), (1, 2), (2, 3), (1, 4)
                # which must become:
                #  (0, 1), (1, 4)
                while True:
                    try:
                        popped_edge = edges.pop()
                    except IndexError:
                        edges = []
                        active_nodes = {tail}
                        break
                    else:
                        popped_head = tailhead(popped_edge)[1]
                        active_nodes.remove(popped_head)

                    if edges:
                        last_head = tailhead(edges[-1])[1]
                        if tail == last_head:
                            break
            edges.append(edge)

            if head in active_nodes:
                # We have a loop!
                cycle.extend(edges)
                final_node = head
                break
            else:
                seen.add(head)
                active_nodes.add(head)
                previous_head = head

        if cycle:
            break
        else:
            explored.update(seen)

    else:
        assert len(cycle) == 0
        raise nx.exception.NetworkXNoCycle("No cycle found.")

    # We now have a list of edges which ends on a cycle.
    # So we need to remove from the beginning edges that are not relevant.

    for i, edge in enumerate(cycle):
        tail, head = tailhead(edge)
        if tail == final_node:
            break

    return cycle[i:]


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch(edge_attrs="weight")
def minimum_cycle_basis(G, weight=None):
    """Returns a minimum weight cycle basis for G

    Minimum weight means a cycle basis for which the total weight
    (length for unweighted graphs) of all the cycles is minimum.

    Parameters
    ----------
    G : NetworkX Graph
    weight: string
        name of the edge attribute to use for edge weights

    Returns
    -------
    A list of cycle lists.  Each cycle list is a list of nodes
    which forms a cycle (loop) in G. Note that the nodes are not
    necessarily returned in a order by which they appear in the cycle

    Examples
    --------
    >>> G = nx.Graph()
    >>> nx.add_cycle(G, [0, 1, 2, 3])
    >>> nx.add_cycle(G, [0, 3, 4, 5])
    >>> nx.minimum_cycle_basis(G)
    [[5, 4, 3, 0], [3, 2, 1, 0]]

    References:
        [1] Kavitha, Telikepalli, et al. "An O(m^2n) Algorithm for
        Minimum Cycle Basis of Graphs."
        http://link.springer.com/article/10.1007/s00453-007-9064-z
        [2] de Pina, J. 1995. Applications of shortest path methods.
        Ph.D. thesis, University of Amsterdam, Netherlands

    See Also
    --------
    simple_cycles, cycle_basis
    """
    # We first split the graph in connected subgraphs
    return sum(
        (_min_cycle_basis(G.subgraph(c), weight) for c in nx.connected_components(G)),
        [],
    )


def _min_cycle_basis(G, weight):
    cb = []
    # We  extract the edges not in a spanning tree. We do not really need a
    # *minimum* spanning tree. That is why we call the next function with
    # weight=None. Depending on implementation, it may be faster as well
    tree_edges = list(nx.minimum_spanning_edges(G, weight=None, data=False))
    chords = G.edges - tree_edges - {(v, u) for u, v in tree_edges}

    # We maintain a set of vectors orthogonal to sofar found cycles
    set_orth = [{edge} for edge in chords]
    while set_orth:
        base = set_orth.pop()
        # kth cycle is "parallel" to kth vector in set_orth
        cycle_edges = _min_cycle(G, base, weight)
        cb.append([v for u, v in cycle_edges])

        # now update set_orth so that k+1,k+2... th elements are
        # orthogonal to the newly found cycle, as per [p. 336, 1]
        set_orth = [
            (
                {e for e in orth if e not in base if e[::-1] not in base}
                | {e for e in base if e not in orth if e[::-1] not in orth}
            )
            if sum((e in orth or e[::-1] in orth) for e in cycle_edges) % 2
            else orth
            for orth in set_orth
        ]
    return cb


def _min_cycle(G, orth, weight):
    """
    Computes the minimum weight cycle in G,
    orthogonal to the vector orth as per [p. 338, 1]
    Use (u, 1) to indicate the lifted copy of u (denoted u' in paper).
    """
    Gi = nx.Graph()

    # Add 2 copies of each edge in G to Gi.
    # If edge is in orth, add cross edge; otherwise in-plane edge
    for u, v, wt in G.edges(data=weight, default=1):
        if (u, v) in orth or (v, u) in orth:
            Gi.add_edges_from([(u, (v, 1)), ((u, 1), v)], Gi_weight=wt)
        else:
            Gi.add_edges_from([(u, v), ((u, 1), (v, 1))], Gi_weight=wt)

    # find the shortest length in Gi between n and (n, 1) for each n
    # Note: Use "Gi_weight" for name of weight attribute
    spl = nx.shortest_path_length
    lift = {n: spl(Gi, source=n, target=(n, 1), weight="Gi_weight") for n in G}

    # Now compute that short path in Gi, which translates to a cycle in G
    start = min(lift, key=lift.get)
    end = (start, 1)
    min_path_i = nx.shortest_path(Gi, source=start, target=end, weight="Gi_weight")

    # Now we obtain the actual path, re-map nodes in Gi to those in G
    min_path = [n if n in G else n[0] for n in min_path_i]

    # Now remove the edges that occur two times
    # two passes: flag which edges get kept, then build it
    edgelist = list(pairwise(min_path))
    edgeset = set()
    for e in edgelist:
        if e in edgeset:
            edgeset.remove(e)
        elif e[::-1] in edgeset:
            edgeset.remove(e[::-1])
        else:
            edgeset.add(e)

    min_edgelist = []
    for e in edgelist:
        if e in edgeset:
            min_edgelist.append(e)
            edgeset.remove(e)
        elif e[::-1] in edgeset:
            min_edgelist.append(e[::-1])
            edgeset.remove(e[::-1])

    return min_edgelist


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def girth(G):
    """Returns the girth of the graph.

    The girth of a graph is the length of its shortest cycle, or infinity if
    the graph is acyclic. The algorithm follows the description given on the
    Wikipedia page [1]_, and runs in time O(mn) on a graph with m edges and n
    nodes.

    Parameters
    ----------
    G : NetworkX Graph

    Returns
    -------
    int or math.inf

    Examples
    --------
    All examples below (except P_5) can easily be checked using Wikipedia,
    which has a page for each of these famous graphs.

    >>> nx.girth(nx.chvatal_graph())
    4
    >>> nx.girth(nx.tutte_graph())
    4
    >>> nx.girth(nx.petersen_graph())
    5
    >>> nx.girth(nx.heawood_graph())
    6
    >>> nx.girth(nx.pappus_graph())
    6
    >>> nx.girth(nx.path_graph(5))
    inf

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Girth_(graph_theory)

    """
    girth = depth_limit = inf
    tree_edge = nx.algorithms.traversal.breadth_first_search.TREE_EDGE
    level_edge = nx.algorithms.traversal.breadth_first_search.LEVEL_EDGE
    for n in G:
        # run a BFS from source n, keeping track of distances; since we want
        # the shortest cycle, no need to explore beyond the current minimum length
        depth = {n: 0}
        for u, v, label in nx.bfs_labeled_edges(G, n):
            du = depth[u]
            if du > depth_limit:
                break
            if label is tree_edge:
                depth[v] = du + 1
            else:
                # if (u, v) is a level edge, the length is du + du + 1 (odd)
                # otherwise, it's a forward edge; length is du + (du + 1) + 1 (even)
                delta = label is level_edge
                length = du + du + 2 - delta
                if length < girth:
                    girth = length
                    depth_limit = du - delta

    return girth