Spaces:
Running
Running
File size: 14,459 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
"""
Capacity scaling minimum cost flow algorithm.
"""
__all__ = ["capacity_scaling"]
from itertools import chain
from math import log
import networkx as nx
from ...utils import BinaryHeap, arbitrary_element, not_implemented_for
def _detect_unboundedness(R):
"""Detect infinite-capacity negative cycles."""
G = nx.DiGraph()
G.add_nodes_from(R)
# Value simulating infinity.
inf = R.graph["inf"]
# True infinity.
f_inf = float("inf")
for u in R:
for v, e in R[u].items():
# Compute the minimum weight of infinite-capacity (u, v) edges.
w = f_inf
for k, e in e.items():
if e["capacity"] == inf:
w = min(w, e["weight"])
if w != f_inf:
G.add_edge(u, v, weight=w)
if nx.negative_edge_cycle(G):
raise nx.NetworkXUnbounded(
"Negative cost cycle of infinite capacity found. "
"Min cost flow may be unbounded below."
)
@not_implemented_for("undirected")
def _build_residual_network(G, demand, capacity, weight):
"""Build a residual network and initialize a zero flow."""
if sum(G.nodes[u].get(demand, 0) for u in G) != 0:
raise nx.NetworkXUnfeasible("Sum of the demands should be 0.")
R = nx.MultiDiGraph()
R.add_nodes_from(
(u, {"excess": -G.nodes[u].get(demand, 0), "potential": 0}) for u in G
)
inf = float("inf")
# Detect selfloops with infinite capacities and negative weights.
for u, v, e in nx.selfloop_edges(G, data=True):
if e.get(weight, 0) < 0 and e.get(capacity, inf) == inf:
raise nx.NetworkXUnbounded(
"Negative cost cycle of infinite capacity found. "
"Min cost flow may be unbounded below."
)
# Extract edges with positive capacities. Self loops excluded.
if G.is_multigraph():
edge_list = [
(u, v, k, e)
for u, v, k, e in G.edges(data=True, keys=True)
if u != v and e.get(capacity, inf) > 0
]
else:
edge_list = [
(u, v, 0, e)
for u, v, e in G.edges(data=True)
if u != v and e.get(capacity, inf) > 0
]
# Simulate infinity with the larger of the sum of absolute node imbalances
# the sum of finite edge capacities or any positive value if both sums are
# zero. This allows the infinite-capacity edges to be distinguished for
# unboundedness detection and directly participate in residual capacity
# calculation.
inf = (
max(
sum(abs(R.nodes[u]["excess"]) for u in R),
2
* sum(
e[capacity]
for u, v, k, e in edge_list
if capacity in e and e[capacity] != inf
),
)
or 1
)
for u, v, k, e in edge_list:
r = min(e.get(capacity, inf), inf)
w = e.get(weight, 0)
# Add both (u, v) and (v, u) into the residual network marked with the
# original key. (key[1] == True) indicates the (u, v) is in the
# original network.
R.add_edge(u, v, key=(k, True), capacity=r, weight=w, flow=0)
R.add_edge(v, u, key=(k, False), capacity=0, weight=-w, flow=0)
# Record the value simulating infinity.
R.graph["inf"] = inf
_detect_unboundedness(R)
return R
def _build_flow_dict(G, R, capacity, weight):
"""Build a flow dictionary from a residual network."""
inf = float("inf")
flow_dict = {}
if G.is_multigraph():
for u in G:
flow_dict[u] = {}
for v, es in G[u].items():
flow_dict[u][v] = {
# Always saturate negative selfloops.
k: (
0
if (
u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0
)
else e[capacity]
)
for k, e in es.items()
}
for v, es in R[u].items():
if v in flow_dict[u]:
flow_dict[u][v].update(
(k[0], e["flow"]) for k, e in es.items() if e["flow"] > 0
)
else:
for u in G:
flow_dict[u] = {
# Always saturate negative selfloops.
v: (
0
if (u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0)
else e[capacity]
)
for v, e in G[u].items()
}
flow_dict[u].update(
(v, e["flow"])
for v, es in R[u].items()
for e in es.values()
if e["flow"] > 0
)
return flow_dict
@nx._dispatch(node_attrs="demand", edge_attrs={"capacity": float("inf"), "weight": 0})
def capacity_scaling(
G, demand="demand", capacity="capacity", weight="weight", heap=BinaryHeap
):
r"""Find a minimum cost flow satisfying all demands in digraph G.
This is a capacity scaling successive shortest augmenting path algorithm.
G is a digraph with edge costs and capacities and in which nodes
have demand, i.e., they want to send or receive some amount of
flow. A negative demand means that the node wants to send flow, a
positive demand means that the node want to receive flow. A flow on
the digraph G satisfies all demand if the net flow into each node
is equal to the demand of that node.
Parameters
----------
G : NetworkX graph
DiGraph or MultiDiGraph on which a minimum cost flow satisfying all
demands is to be found.
demand : string
Nodes of the graph G are expected to have an attribute demand
that indicates how much flow a node wants to send (negative
demand) or receive (positive demand). Note that the sum of the
demands should be 0 otherwise the problem in not feasible. If
this attribute is not present, a node is considered to have 0
demand. Default value: 'demand'.
capacity : string
Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: 'capacity'.
weight : string
Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: 'weight'.
heap : class
Type of heap to be used in the algorithm. It should be a subclass of
:class:`MinHeap` or implement a compatible interface.
If a stock heap implementation is to be used, :class:`BinaryHeap` is
recommended over :class:`PairingHeap` for Python implementations without
optimized attribute accesses (e.g., CPython) despite a slower
asymptotic running time. For Python implementations with optimized
attribute accesses (e.g., PyPy), :class:`PairingHeap` provides better
performance. Default value: :class:`BinaryHeap`.
Returns
-------
flowCost : integer
Cost of a minimum cost flow satisfying all demands.
flowDict : dictionary
If G is a digraph, a dict-of-dicts keyed by nodes such that
flowDict[u][v] is the flow on edge (u, v).
If G is a MultiDiGraph, a dict-of-dicts-of-dicts keyed by nodes
so that flowDict[u][v][key] is the flow on edge (u, v, key).
Raises
------
NetworkXError
This exception is raised if the input graph is not directed,
not connected.
NetworkXUnfeasible
This exception is raised in the following situations:
* The sum of the demands is not zero. Then, there is no
flow satisfying all demands.
* There is no flow satisfying all demand.
NetworkXUnbounded
This exception is raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
satisfying all demands is unbounded below.
Notes
-----
This algorithm does not work if edge weights are floating-point numbers.
See also
--------
:meth:`network_simplex`
Examples
--------
A simple example of a min cost flow problem.
>>> G = nx.DiGraph()
>>> G.add_node("a", demand=-5)
>>> G.add_node("d", demand=5)
>>> G.add_edge("a", "b", weight=3, capacity=4)
>>> G.add_edge("a", "c", weight=6, capacity=10)
>>> G.add_edge("b", "d", weight=1, capacity=9)
>>> G.add_edge("c", "d", weight=2, capacity=5)
>>> flowCost, flowDict = nx.capacity_scaling(G)
>>> flowCost
24
>>> flowDict
{'a': {'b': 4, 'c': 1}, 'd': {}, 'b': {'d': 4}, 'c': {'d': 1}}
It is possible to change the name of the attributes used for the
algorithm.
>>> G = nx.DiGraph()
>>> G.add_node("p", spam=-4)
>>> G.add_node("q", spam=2)
>>> G.add_node("a", spam=-2)
>>> G.add_node("d", spam=-1)
>>> G.add_node("t", spam=2)
>>> G.add_node("w", spam=3)
>>> G.add_edge("p", "q", cost=7, vacancies=5)
>>> G.add_edge("p", "a", cost=1, vacancies=4)
>>> G.add_edge("q", "d", cost=2, vacancies=3)
>>> G.add_edge("t", "q", cost=1, vacancies=2)
>>> G.add_edge("a", "t", cost=2, vacancies=4)
>>> G.add_edge("d", "w", cost=3, vacancies=4)
>>> G.add_edge("t", "w", cost=4, vacancies=1)
>>> flowCost, flowDict = nx.capacity_scaling(
... G, demand="spam", capacity="vacancies", weight="cost"
... )
>>> flowCost
37
>>> flowDict
{'p': {'q': 2, 'a': 2}, 'q': {'d': 1}, 'a': {'t': 4}, 'd': {'w': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}
"""
R = _build_residual_network(G, demand, capacity, weight)
inf = float("inf")
# Account cost of negative selfloops.
flow_cost = sum(
0
if e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0
else e[capacity] * e[weight]
for u, v, e in nx.selfloop_edges(G, data=True)
)
# Determine the maximum edge capacity.
wmax = max(chain([-inf], (e["capacity"] for u, v, e in R.edges(data=True))))
if wmax == -inf:
# Residual network has no edges.
return flow_cost, _build_flow_dict(G, R, capacity, weight)
R_nodes = R.nodes
R_succ = R.succ
delta = 2 ** int(log(wmax, 2))
while delta >= 1:
# Saturate Δ-residual edges with negative reduced costs to achieve
# Δ-optimality.
for u in R:
p_u = R_nodes[u]["potential"]
for v, es in R_succ[u].items():
for k, e in es.items():
flow = e["capacity"] - e["flow"]
if e["weight"] - p_u + R_nodes[v]["potential"] < 0:
flow = e["capacity"] - e["flow"]
if flow >= delta:
e["flow"] += flow
R_succ[v][u][(k[0], not k[1])]["flow"] -= flow
R_nodes[u]["excess"] -= flow
R_nodes[v]["excess"] += flow
# Determine the Δ-active nodes.
S = set()
T = set()
S_add = S.add
S_remove = S.remove
T_add = T.add
T_remove = T.remove
for u in R:
excess = R_nodes[u]["excess"]
if excess >= delta:
S_add(u)
elif excess <= -delta:
T_add(u)
# Repeatedly augment flow from S to T along shortest paths until
# Δ-feasibility is achieved.
while S and T:
s = arbitrary_element(S)
t = None
# Search for a shortest path in terms of reduce costs from s to
# any t in T in the Δ-residual network.
d = {}
pred = {s: None}
h = heap()
h_insert = h.insert
h_get = h.get
h_insert(s, 0)
while h:
u, d_u = h.pop()
d[u] = d_u
if u in T:
# Path found.
t = u
break
p_u = R_nodes[u]["potential"]
for v, es in R_succ[u].items():
if v in d:
continue
wmin = inf
# Find the minimum-weighted (u, v) Δ-residual edge.
for k, e in es.items():
if e["capacity"] - e["flow"] >= delta:
w = e["weight"]
if w < wmin:
wmin = w
kmin = k
emin = e
if wmin == inf:
continue
# Update the distance label of v.
d_v = d_u + wmin - p_u + R_nodes[v]["potential"]
if h_insert(v, d_v):
pred[v] = (u, kmin, emin)
if t is not None:
# Augment Δ units of flow from s to t.
while u != s:
v = u
u, k, e = pred[v]
e["flow"] += delta
R_succ[v][u][(k[0], not k[1])]["flow"] -= delta
# Account node excess and deficit.
R_nodes[s]["excess"] -= delta
R_nodes[t]["excess"] += delta
if R_nodes[s]["excess"] < delta:
S_remove(s)
if R_nodes[t]["excess"] > -delta:
T_remove(t)
# Update node potentials.
d_t = d[t]
for u, d_u in d.items():
R_nodes[u]["potential"] -= d_u - d_t
else:
# Path not found.
S_remove(s)
delta //= 2
if any(R.nodes[u]["excess"] != 0 for u in R):
raise nx.NetworkXUnfeasible("No flow satisfying all demands.")
# Calculate the flow cost.
for u in R:
for v, es in R_succ[u].items():
for e in es.values():
flow = e["flow"]
if flow > 0:
flow_cost += flow * e["weight"]
return flow_cost, _build_flow_dict(G, R, capacity, weight)
|