Spaces:
Running
Running
File size: 6,001 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
"""
Utility classes and functions for network flow algorithms.
"""
from collections import deque
import networkx as nx
__all__ = [
"CurrentEdge",
"Level",
"GlobalRelabelThreshold",
"build_residual_network",
"detect_unboundedness",
"build_flow_dict",
]
class CurrentEdge:
"""Mechanism for iterating over out-edges incident to a node in a circular
manner. StopIteration exception is raised when wraparound occurs.
"""
__slots__ = ("_edges", "_it", "_curr")
def __init__(self, edges):
self._edges = edges
if self._edges:
self._rewind()
def get(self):
return self._curr
def move_to_next(self):
try:
self._curr = next(self._it)
except StopIteration:
self._rewind()
raise
def _rewind(self):
self._it = iter(self._edges.items())
self._curr = next(self._it)
class Level:
"""Active and inactive nodes in a level."""
__slots__ = ("active", "inactive")
def __init__(self):
self.active = set()
self.inactive = set()
class GlobalRelabelThreshold:
"""Measurement of work before the global relabeling heuristic should be
applied.
"""
def __init__(self, n, m, freq):
self._threshold = (n + m) / freq if freq else float("inf")
self._work = 0
def add_work(self, work):
self._work += work
def is_reached(self):
return self._work >= self._threshold
def clear_work(self):
self._work = 0
@nx._dispatch(edge_attrs={"capacity": float("inf")})
def build_residual_network(G, capacity):
"""Build a residual network and initialize a zero flow.
The residual network :samp:`R` from an input graph :samp:`G` has the
same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
in :samp:`G`.
For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
in :samp:`G` or zero otherwise. If the capacity is infinite,
:samp:`R[u][v]['capacity']` will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
:samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
:samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.
The flow value, defined as the total flow into :samp:`t`, the sink, is
stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not
specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such
that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
:samp:`s`-:samp:`t` cut.
"""
if G.is_multigraph():
raise nx.NetworkXError("MultiGraph and MultiDiGraph not supported (yet).")
R = nx.DiGraph()
R.add_nodes_from(G)
inf = float("inf")
# Extract edges with positive capacities. Self loops excluded.
edge_list = [
(u, v, attr)
for u, v, attr in G.edges(data=True)
if u != v and attr.get(capacity, inf) > 0
]
# Simulate infinity with three times the sum of the finite edge capacities
# or any positive value if the sum is zero. This allows the
# infinite-capacity edges to be distinguished for unboundedness detection
# and directly participate in residual capacity calculation. If the maximum
# flow is finite, these edges cannot appear in the minimum cut and thus
# guarantee correctness. Since the residual capacity of an
# infinite-capacity edge is always at least 2/3 of inf, while that of an
# finite-capacity edge is at most 1/3 of inf, if an operation moves more
# than 1/3 of inf units of flow to t, there must be an infinite-capacity
# s-t path in G.
inf = (
3
* sum(
attr[capacity]
for u, v, attr in edge_list
if capacity in attr and attr[capacity] != inf
)
or 1
)
if G.is_directed():
for u, v, attr in edge_list:
r = min(attr.get(capacity, inf), inf)
if not R.has_edge(u, v):
# Both (u, v) and (v, u) must be present in the residual
# network.
R.add_edge(u, v, capacity=r)
R.add_edge(v, u, capacity=0)
else:
# The edge (u, v) was added when (v, u) was visited.
R[u][v]["capacity"] = r
else:
for u, v, attr in edge_list:
# Add a pair of edges with equal residual capacities.
r = min(attr.get(capacity, inf), inf)
R.add_edge(u, v, capacity=r)
R.add_edge(v, u, capacity=r)
# Record the value simulating infinity.
R.graph["inf"] = inf
return R
@nx._dispatch(
graphs="R",
preserve_edge_attrs={"R": {"capacity": float("inf")}},
preserve_graph_attrs=True,
)
def detect_unboundedness(R, s, t):
"""Detect an infinite-capacity s-t path in R."""
q = deque([s])
seen = {s}
inf = R.graph["inf"]
while q:
u = q.popleft()
for v, attr in R[u].items():
if attr["capacity"] == inf and v not in seen:
if v == t:
raise nx.NetworkXUnbounded(
"Infinite capacity path, flow unbounded above."
)
seen.add(v)
q.append(v)
@nx._dispatch(graphs={"G": 0, "R": 1}, preserve_edge_attrs={"R": {"flow": None}})
def build_flow_dict(G, R):
"""Build a flow dictionary from a residual network."""
flow_dict = {}
for u in G:
flow_dict[u] = {v: 0 for v in G[u]}
flow_dict[u].update(
(v, attr["flow"]) for v, attr in R[u].items() if attr["flow"] > 0
)
return flow_dict
|