File size: 19,968 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
"""
Link prediction algorithms.
"""


from math import log

import networkx as nx
from networkx.utils import not_implemented_for

__all__ = [
    "resource_allocation_index",
    "jaccard_coefficient",
    "adamic_adar_index",
    "preferential_attachment",
    "cn_soundarajan_hopcroft",
    "ra_index_soundarajan_hopcroft",
    "within_inter_cluster",
    "common_neighbor_centrality",
]


def _apply_prediction(G, func, ebunch=None):
    """Applies the given function to each edge in the specified iterable
    of edges.

    `G` is an instance of :class:`networkx.Graph`.

    `func` is a function on two inputs, each of which is a node in the
    graph. The function can return anything, but it should return a
    value representing a prediction of the likelihood of a "link"
    joining the two nodes.

    `ebunch` is an iterable of pairs of nodes. If not specified, all
    non-edges in the graph `G` will be used.

    """
    if ebunch is None:
        ebunch = nx.non_edges(G)
    return ((u, v, func(u, v)) for u, v in ebunch)


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def resource_allocation_index(G, ebunch=None):
    r"""Compute the resource allocation index of all node pairs in ebunch.

    Resource allocation index of `u` and `v` is defined as

    .. math::

        \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|}

    where $\Gamma(u)$ denotes the set of neighbors of $u$.

    Parameters
    ----------
    G : graph
        A NetworkX undirected graph.

    ebunch : iterable of node pairs, optional (default = None)
        Resource allocation index will be computed for each pair of
        nodes given in the iterable. The pairs must be given as
        2-tuples (u, v) where u and v are nodes in the graph. If ebunch
        is None then all nonexistent edges in the graph will be used.
        Default value: None.

    Returns
    -------
    piter : iterator
        An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
        pair of nodes and p is their resource allocation index.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> preds = nx.resource_allocation_index(G, [(0, 1), (2, 3)])
    >>> for u, v, p in preds:
    ...     print(f"({u}, {v}) -> {p:.8f}")
    (0, 1) -> 0.75000000
    (2, 3) -> 0.75000000

    References
    ----------
    .. [1] T. Zhou, L. Lu, Y.-C. Zhang.
       Predicting missing links via local information.
       Eur. Phys. J. B 71 (2009) 623.
       https://arxiv.org/pdf/0901.0553.pdf
    """

    def predict(u, v):
        return sum(1 / G.degree(w) for w in nx.common_neighbors(G, u, v))

    return _apply_prediction(G, predict, ebunch)


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def jaccard_coefficient(G, ebunch=None):
    r"""Compute the Jaccard coefficient of all node pairs in ebunch.

    Jaccard coefficient of nodes `u` and `v` is defined as

    .. math::

        \frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}

    where $\Gamma(u)$ denotes the set of neighbors of $u$.

    Parameters
    ----------
    G : graph
        A NetworkX undirected graph.

    ebunch : iterable of node pairs, optional (default = None)
        Jaccard coefficient will be computed for each pair of nodes
        given in the iterable. The pairs must be given as 2-tuples
        (u, v) where u and v are nodes in the graph. If ebunch is None
        then all nonexistent edges in the graph will be used.
        Default value: None.

    Returns
    -------
    piter : iterator
        An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
        pair of nodes and p is their Jaccard coefficient.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> preds = nx.jaccard_coefficient(G, [(0, 1), (2, 3)])
    >>> for u, v, p in preds:
    ...     print(f"({u}, {v}) -> {p:.8f}")
    (0, 1) -> 0.60000000
    (2, 3) -> 0.60000000

    References
    ----------
    .. [1] D. Liben-Nowell, J. Kleinberg.
           The Link Prediction Problem for Social Networks (2004).
           http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
    """

    def predict(u, v):
        union_size = len(set(G[u]) | set(G[v]))
        if union_size == 0:
            return 0
        return len(list(nx.common_neighbors(G, u, v))) / union_size

    return _apply_prediction(G, predict, ebunch)


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def adamic_adar_index(G, ebunch=None):
    r"""Compute the Adamic-Adar index of all node pairs in ebunch.

    Adamic-Adar index of `u` and `v` is defined as

    .. math::

        \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}

    where $\Gamma(u)$ denotes the set of neighbors of $u$.
    This index leads to zero-division for nodes only connected via self-loops.
    It is intended to be used when no self-loops are present.

    Parameters
    ----------
    G : graph
        NetworkX undirected graph.

    ebunch : iterable of node pairs, optional (default = None)
        Adamic-Adar index will be computed for each pair of nodes given
        in the iterable. The pairs must be given as 2-tuples (u, v)
        where u and v are nodes in the graph. If ebunch is None then all
        nonexistent edges in the graph will be used.
        Default value: None.

    Returns
    -------
    piter : iterator
        An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
        pair of nodes and p is their Adamic-Adar index.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)])
    >>> for u, v, p in preds:
    ...     print(f"({u}, {v}) -> {p:.8f}")
    (0, 1) -> 2.16404256
    (2, 3) -> 2.16404256

    References
    ----------
    .. [1] D. Liben-Nowell, J. Kleinberg.
           The Link Prediction Problem for Social Networks (2004).
           http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
    """

    def predict(u, v):
        return sum(1 / log(G.degree(w)) for w in nx.common_neighbors(G, u, v))

    return _apply_prediction(G, predict, ebunch)


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def common_neighbor_centrality(G, ebunch=None, alpha=0.8):
    r"""Return the CCPA score for each pair of nodes.

    Compute the Common Neighbor and Centrality based Parameterized Algorithm(CCPA)
    score of all node pairs in ebunch.

    CCPA score of `u` and `v` is defined as

    .. math::

        \alpha \cdot (|\Gamma (u){\cap }^{}\Gamma (v)|)+(1-\alpha )\cdot \frac{N}{{d}_{uv}}

    where $\Gamma(u)$ denotes the set of neighbors of $u$, $\Gamma(v)$ denotes the
    set of neighbors of $v$, $\alpha$ is  parameter varies between [0,1], $N$ denotes
    total number of nodes in the Graph and ${d}_{uv}$ denotes shortest distance
    between $u$ and $v$.

    This algorithm is based on two vital properties of nodes, namely the number
    of common neighbors and their centrality. Common neighbor refers to the common
    nodes between two nodes. Centrality refers to the prestige that a node enjoys
    in a network.

    .. seealso::

        :func:`common_neighbors`

    Parameters
    ----------
    G : graph
        NetworkX undirected graph.

    ebunch : iterable of node pairs, optional (default = None)
        Preferential attachment score will be computed for each pair of
        nodes given in the iterable. The pairs must be given as
        2-tuples (u, v) where u and v are nodes in the graph. If ebunch
        is None then all nonexistent edges in the graph will be used.
        Default value: None.

    alpha : Parameter defined for participation of Common Neighbor
            and Centrality Algorithm share. Values for alpha should
            normally be between 0 and 1. Default value set to 0.8
            because author found better performance at 0.8 for all the
            dataset.
            Default value: 0.8


    Returns
    -------
    piter : iterator
        An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
        pair of nodes and p is their Common Neighbor and Centrality based
        Parameterized Algorithm(CCPA) score.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> preds = nx.common_neighbor_centrality(G, [(0, 1), (2, 3)])
    >>> for u, v, p in preds:
    ...     print(f"({u}, {v}) -> {p}")
    (0, 1) -> 3.4000000000000004
    (2, 3) -> 3.4000000000000004

    References
    ----------
    .. [1] Ahmad, I., Akhtar, M.U., Noor, S. et al.
           Missing Link Prediction using Common Neighbor and Centrality based Parameterized Algorithm.
           Sci Rep 10, 364 (2020).
           https://doi.org/10.1038/s41598-019-57304-y
    """

    # When alpha == 1, the CCPA score simplifies to the number of common neighbors.
    if alpha == 1:

        def predict(u, v):
            if u == v:
                raise nx.NetworkXAlgorithmError("Self links are not supported")

            return sum(1 for _ in nx.common_neighbors(G, u, v))

    else:
        spl = dict(nx.shortest_path_length(G))
        inf = float("inf")

        def predict(u, v):
            if u == v:
                raise nx.NetworkXAlgorithmError("Self links are not supported")
            path_len = spl[u].get(v, inf)

            return alpha * sum(1 for _ in nx.common_neighbors(G, u, v)) + (
                1 - alpha
            ) * (G.number_of_nodes() / path_len)

    return _apply_prediction(G, predict, ebunch)


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def preferential_attachment(G, ebunch=None):
    r"""Compute the preferential attachment score of all node pairs in ebunch.

    Preferential attachment score of `u` and `v` is defined as

    .. math::

        |\Gamma(u)| |\Gamma(v)|

    where $\Gamma(u)$ denotes the set of neighbors of $u$.

    Parameters
    ----------
    G : graph
        NetworkX undirected graph.

    ebunch : iterable of node pairs, optional (default = None)
        Preferential attachment score will be computed for each pair of
        nodes given in the iterable. The pairs must be given as
        2-tuples (u, v) where u and v are nodes in the graph. If ebunch
        is None then all nonexistent edges in the graph will be used.
        Default value: None.

    Returns
    -------
    piter : iterator
        An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
        pair of nodes and p is their preferential attachment score.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])
    >>> for u, v, p in preds:
    ...     print(f"({u}, {v}) -> {p}")
    (0, 1) -> 16
    (2, 3) -> 16

    References
    ----------
    .. [1] D. Liben-Nowell, J. Kleinberg.
           The Link Prediction Problem for Social Networks (2004).
           http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
    """

    def predict(u, v):
        return G.degree(u) * G.degree(v)

    return _apply_prediction(G, predict, ebunch)


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch(node_attrs="community")
def cn_soundarajan_hopcroft(G, ebunch=None, community="community"):
    r"""Count the number of common neighbors of all node pairs in ebunch
        using community information.

    For two nodes $u$ and $v$, this function computes the number of
    common neighbors and bonus one for each common neighbor belonging to
    the same community as $u$ and $v$. Mathematically,

    .. math::

        |\Gamma(u) \cap \Gamma(v)| + \sum_{w \in \Gamma(u) \cap \Gamma(v)} f(w)

    where $f(w)$ equals 1 if $w$ belongs to the same community as $u$
    and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of
    neighbors of $u$.

    Parameters
    ----------
    G : graph
        A NetworkX undirected graph.

    ebunch : iterable of node pairs, optional (default = None)
        The score will be computed for each pair of nodes given in the
        iterable. The pairs must be given as 2-tuples (u, v) where u
        and v are nodes in the graph. If ebunch is None then all
        nonexistent edges in the graph will be used.
        Default value: None.

    community : string, optional (default = 'community')
        Nodes attribute name containing the community information.
        G[u][community] identifies which community u belongs to. Each
        node belongs to at most one community. Default value: 'community'.

    Returns
    -------
    piter : iterator
        An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
        pair of nodes and p is their score.

    Examples
    --------
    >>> G = nx.path_graph(3)
    >>> G.nodes[0]["community"] = 0
    >>> G.nodes[1]["community"] = 0
    >>> G.nodes[2]["community"] = 0
    >>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])
    >>> for u, v, p in preds:
    ...     print(f"({u}, {v}) -> {p}")
    (0, 2) -> 2

    References
    ----------
    .. [1] Sucheta Soundarajan and John Hopcroft.
       Using community information to improve the precision of link
       prediction methods.
       In Proceedings of the 21st international conference companion on
       World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.
       http://doi.acm.org/10.1145/2187980.2188150
    """

    def predict(u, v):
        Cu = _community(G, u, community)
        Cv = _community(G, v, community)
        cnbors = list(nx.common_neighbors(G, u, v))
        neighbors = (
            sum(_community(G, w, community) == Cu for w in cnbors) if Cu == Cv else 0
        )
        return len(cnbors) + neighbors

    return _apply_prediction(G, predict, ebunch)


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch(node_attrs="community")
def ra_index_soundarajan_hopcroft(G, ebunch=None, community="community"):
    r"""Compute the resource allocation index of all node pairs in
    ebunch using community information.

    For two nodes $u$ and $v$, this function computes the resource
    allocation index considering only common neighbors belonging to the
    same community as $u$ and $v$. Mathematically,

    .. math::

        \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|}

    where $f(w)$ equals 1 if $w$ belongs to the same community as $u$
    and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of
    neighbors of $u$.

    Parameters
    ----------
    G : graph
        A NetworkX undirected graph.

    ebunch : iterable of node pairs, optional (default = None)
        The score will be computed for each pair of nodes given in the
        iterable. The pairs must be given as 2-tuples (u, v) where u
        and v are nodes in the graph. If ebunch is None then all
        nonexistent edges in the graph will be used.
        Default value: None.

    community : string, optional (default = 'community')
        Nodes attribute name containing the community information.
        G[u][community] identifies which community u belongs to. Each
        node belongs to at most one community. Default value: 'community'.

    Returns
    -------
    piter : iterator
        An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
        pair of nodes and p is their score.

    Examples
    --------
    >>> G = nx.Graph()
    >>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
    >>> G.nodes[0]["community"] = 0
    >>> G.nodes[1]["community"] = 0
    >>> G.nodes[2]["community"] = 1
    >>> G.nodes[3]["community"] = 0
    >>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])
    >>> for u, v, p in preds:
    ...     print(f"({u}, {v}) -> {p:.8f}")
    (0, 3) -> 0.50000000

    References
    ----------
    .. [1] Sucheta Soundarajan and John Hopcroft.
       Using community information to improve the precision of link
       prediction methods.
       In Proceedings of the 21st international conference companion on
       World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.
       http://doi.acm.org/10.1145/2187980.2188150
    """

    def predict(u, v):
        Cu = _community(G, u, community)
        Cv = _community(G, v, community)
        if Cu != Cv:
            return 0
        cnbors = nx.common_neighbors(G, u, v)
        return sum(1 / G.degree(w) for w in cnbors if _community(G, w, community) == Cu)

    return _apply_prediction(G, predict, ebunch)


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch(node_attrs="community")
def within_inter_cluster(G, ebunch=None, delta=0.001, community="community"):
    """Compute the ratio of within- and inter-cluster common neighbors
    of all node pairs in ebunch.

    For two nodes `u` and `v`, if a common neighbor `w` belongs to the
    same community as them, `w` is considered as within-cluster common
    neighbor of `u` and `v`. Otherwise, it is considered as
    inter-cluster common neighbor of `u` and `v`. The ratio between the
    size of the set of within- and inter-cluster common neighbors is
    defined as the WIC measure. [1]_

    Parameters
    ----------
    G : graph
        A NetworkX undirected graph.

    ebunch : iterable of node pairs, optional (default = None)
        The WIC measure will be computed for each pair of nodes given in
        the iterable. The pairs must be given as 2-tuples (u, v) where
        u and v are nodes in the graph. If ebunch is None then all
        nonexistent edges in the graph will be used.
        Default value: None.

    delta : float, optional (default = 0.001)
        Value to prevent division by zero in case there is no
        inter-cluster common neighbor between two nodes. See [1]_ for
        details. Default value: 0.001.

    community : string, optional (default = 'community')
        Nodes attribute name containing the community information.
        G[u][community] identifies which community u belongs to. Each
        node belongs to at most one community. Default value: 'community'.

    Returns
    -------
    piter : iterator
        An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
        pair of nodes and p is their WIC measure.

    Examples
    --------
    >>> G = nx.Graph()
    >>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])
    >>> G.nodes[0]["community"] = 0
    >>> G.nodes[1]["community"] = 1
    >>> G.nodes[2]["community"] = 0
    >>> G.nodes[3]["community"] = 0
    >>> G.nodes[4]["community"] = 0
    >>> preds = nx.within_inter_cluster(G, [(0, 4)])
    >>> for u, v, p in preds:
    ...     print(f"({u}, {v}) -> {p:.8f}")
    (0, 4) -> 1.99800200
    >>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)
    >>> for u, v, p in preds:
    ...     print(f"({u}, {v}) -> {p:.8f}")
    (0, 4) -> 1.33333333

    References
    ----------
    .. [1] Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes.
       Link prediction in complex networks based on cluster information.
       In Proceedings of the 21st Brazilian conference on Advances in
       Artificial Intelligence (SBIA'12)
       https://doi.org/10.1007/978-3-642-34459-6_10
    """
    if delta <= 0:
        raise nx.NetworkXAlgorithmError("Delta must be greater than zero")

    def predict(u, v):
        Cu = _community(G, u, community)
        Cv = _community(G, v, community)
        if Cu != Cv:
            return 0
        cnbors = set(nx.common_neighbors(G, u, v))
        within = {w for w in cnbors if _community(G, w, community) == Cu}
        inter = cnbors - within
        return len(within) / (len(inter) + delta)

    return _apply_prediction(G, predict, ebunch)


def _community(G, u, community):
    """Get the community of the given node."""
    node_u = G.nodes[u]
    try:
        return node_u[community]
    except KeyError as err:
        raise nx.NetworkXAlgorithmError("No community information") from err