File size: 41,069 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
"""Functions to convert NetworkX graphs to and from common data containers
like numpy arrays, scipy sparse arrays, and pandas DataFrames.

The preferred way of converting data to a NetworkX graph is through the
graph constructor.  The constructor calls the `~networkx.convert.to_networkx_graph`
function which attempts to guess the input type and convert it automatically.

Examples
--------
Create a 10 node random graph from a numpy array

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> a = rng.integers(low=0, high=2, size=(10, 10))
>>> DG = nx.from_numpy_array(a, create_using=nx.DiGraph)

or equivalently:

>>> DG = nx.DiGraph(a)

which calls `from_numpy_array` internally based on the type of ``a``.

See Also
--------
nx_agraph, nx_pydot
"""

import itertools
from collections import defaultdict

import networkx as nx
from networkx.utils import not_implemented_for

__all__ = [
    "from_pandas_adjacency",
    "to_pandas_adjacency",
    "from_pandas_edgelist",
    "to_pandas_edgelist",
    "from_scipy_sparse_array",
    "to_scipy_sparse_array",
    "from_numpy_array",
    "to_numpy_array",
]


@nx._dispatch(edge_attrs="weight")
def to_pandas_adjacency(
    G,
    nodelist=None,
    dtype=None,
    order=None,
    multigraph_weight=sum,
    weight="weight",
    nonedge=0.0,
):
    """Returns the graph adjacency matrix as a Pandas DataFrame.

    Parameters
    ----------
    G : graph
        The NetworkX graph used to construct the Pandas DataFrame.

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in `nodelist`.
       If `nodelist` is None, then the ordering is produced by G.nodes().

    multigraph_weight : {sum, min, max}, optional
        An operator that determines how weights in multigraphs are handled.
        The default is to sum the weights of the multiple edges.

    weight : string or None, optional
        The edge attribute that holds the numerical value used for
        the edge weight.  If an edge does not have that attribute, then the
        value 1 is used instead.

    nonedge : float, optional
        The matrix values corresponding to nonedges are typically set to zero.
        However, this could be undesirable if there are matrix values
        corresponding to actual edges that also have the value zero. If so,
        one might prefer nonedges to have some other value, such as nan.

    Returns
    -------
    df : Pandas DataFrame
       Graph adjacency matrix

    Notes
    -----
    For directed graphs, entry i,j corresponds to an edge from i to j.

    The DataFrame entries are assigned to the weight edge attribute. When
    an edge does not have a weight attribute, the value of the entry is set to
    the number 1.  For multiple (parallel) edges, the values of the entries
    are determined by the 'multigraph_weight' parameter.  The default is to
    sum the weight attributes for each of the parallel edges.

    When `nodelist` does not contain every node in `G`, the matrix is built
    from the subgraph of `G` that is induced by the nodes in `nodelist`.

    The convention used for self-loop edges in graphs is to assign the
    diagonal matrix entry value to the weight attribute of the edge
    (or the number 1 if the edge has no weight attribute).  If the
    alternate convention of doubling the edge weight is desired the
    resulting Pandas DataFrame can be modified as follows:

    >>> import pandas as pd
    >>> pd.options.display.max_columns = 20
    >>> import numpy as np
    >>> G = nx.Graph([(1, 1)])
    >>> df = nx.to_pandas_adjacency(G, dtype=int)
    >>> df
       1
    1  1
    >>> df.values[np.diag_indices_from(df)] *= 2
    >>> df
       1
    1  2

    Examples
    --------
    >>> G = nx.MultiDiGraph()
    >>> G.add_edge(0, 1, weight=2)
    0
    >>> G.add_edge(1, 0)
    0
    >>> G.add_edge(2, 2, weight=3)
    0
    >>> G.add_edge(2, 2)
    1
    >>> nx.to_pandas_adjacency(G, nodelist=[0, 1, 2], dtype=int)
       0  1  2
    0  0  2  0
    1  1  0  0
    2  0  0  4

    """
    import pandas as pd

    M = to_numpy_array(
        G,
        nodelist=nodelist,
        dtype=dtype,
        order=order,
        multigraph_weight=multigraph_weight,
        weight=weight,
        nonedge=nonedge,
    )
    if nodelist is None:
        nodelist = list(G)
    return pd.DataFrame(data=M, index=nodelist, columns=nodelist)


@nx._dispatch(graphs=None)
def from_pandas_adjacency(df, create_using=None):
    r"""Returns a graph from Pandas DataFrame.

    The Pandas DataFrame is interpreted as an adjacency matrix for the graph.

    Parameters
    ----------
    df : Pandas DataFrame
      An adjacency matrix representation of a graph

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
       Graph type to create. If graph instance, then cleared before populated.

    Notes
    -----
    For directed graphs, explicitly mention create_using=nx.DiGraph,
    and entry i,j of df corresponds to an edge from i to j.

    If `df` has a single data type for each entry it will be converted to an
    appropriate Python data type.

    If you have node attributes stored in a separate dataframe `df_nodes`,
    you can load those attributes to the graph `G` using the following code:

    ```
    df_nodes = pd.DataFrame({"node_id": [1, 2, 3], "attribute1": ["A", "B", "C"]})
    G.add_nodes_from((n, dict(d)) for n, d in df_nodes.iterrows())
    ```

    If `df` has a user-specified compound data type the names
    of the data fields will be used as attribute keys in the resulting
    NetworkX graph.

    See Also
    --------
    to_pandas_adjacency

    Examples
    --------
    Simple integer weights on edges:

    >>> import pandas as pd
    >>> pd.options.display.max_columns = 20
    >>> df = pd.DataFrame([[1, 1], [2, 1]])
    >>> df
       0  1
    0  1  1
    1  2  1
    >>> G = nx.from_pandas_adjacency(df)
    >>> G.name = "Graph from pandas adjacency matrix"
    >>> print(G)
    Graph named 'Graph from pandas adjacency matrix' with 2 nodes and 3 edges
    """

    try:
        df = df[df.index]
    except Exception as err:
        missing = list(set(df.index).difference(set(df.columns)))
        msg = f"{missing} not in columns"
        raise nx.NetworkXError("Columns must match Indices.", msg) from err

    A = df.values
    G = from_numpy_array(A, create_using=create_using)

    nx.relabel.relabel_nodes(G, dict(enumerate(df.columns)), copy=False)
    return G


@nx._dispatch(preserve_edge_attrs=True)
def to_pandas_edgelist(
    G,
    source="source",
    target="target",
    nodelist=None,
    dtype=None,
    edge_key=None,
):
    """Returns the graph edge list as a Pandas DataFrame.

    Parameters
    ----------
    G : graph
        The NetworkX graph used to construct the Pandas DataFrame.

    source : str or int, optional
        A valid column name (string or integer) for the source nodes (for the
        directed case).

    target : str or int, optional
        A valid column name (string or integer) for the target nodes (for the
        directed case).

    nodelist : list, optional
       Use only nodes specified in nodelist

    dtype : dtype, default None
        Use to create the DataFrame. Data type to force.
        Only a single dtype is allowed. If None, infer.

    edge_key : str or int or None, optional (default=None)
        A valid column name (string or integer) for the edge keys (for the
        multigraph case). If None, edge keys are not stored in the DataFrame.

    Returns
    -------
    df : Pandas DataFrame
       Graph edge list

    Examples
    --------
    >>> G = nx.Graph(
    ...     [
    ...         ("A", "B", {"cost": 1, "weight": 7}),
    ...         ("C", "E", {"cost": 9, "weight": 10}),
    ...     ]
    ... )
    >>> df = nx.to_pandas_edgelist(G, nodelist=["A", "C"])
    >>> df[["source", "target", "cost", "weight"]]
      source target  cost  weight
    0      A      B     1       7
    1      C      E     9      10

    >>> G = nx.MultiGraph([('A', 'B', {'cost': 1}), ('A', 'B', {'cost': 9})])
    >>> df = nx.to_pandas_edgelist(G, nodelist=['A', 'C'], edge_key='ekey')
    >>> df[['source', 'target', 'cost', 'ekey']]
      source target  cost  ekey
    0      A      B     1     0
    1      A      B     9     1

    """
    import pandas as pd

    if nodelist is None:
        edgelist = G.edges(data=True)
    else:
        edgelist = G.edges(nodelist, data=True)
    source_nodes = [s for s, _, _ in edgelist]
    target_nodes = [t for _, t, _ in edgelist]

    all_attrs = set().union(*(d.keys() for _, _, d in edgelist))
    if source in all_attrs:
        raise nx.NetworkXError(f"Source name {source!r} is an edge attr name")
    if target in all_attrs:
        raise nx.NetworkXError(f"Target name {target!r} is an edge attr name")

    nan = float("nan")
    edge_attr = {k: [d.get(k, nan) for _, _, d in edgelist] for k in all_attrs}

    if G.is_multigraph() and edge_key is not None:
        if edge_key in all_attrs:
            raise nx.NetworkXError(f"Edge key name {edge_key!r} is an edge attr name")
        edge_keys = [k for _, _, k in G.edges(keys=True)]
        edgelistdict = {source: source_nodes, target: target_nodes, edge_key: edge_keys}
    else:
        edgelistdict = {source: source_nodes, target: target_nodes}

    edgelistdict.update(edge_attr)
    return pd.DataFrame(edgelistdict, dtype=dtype)


@nx._dispatch(graphs=None)
def from_pandas_edgelist(
    df,
    source="source",
    target="target",
    edge_attr=None,
    create_using=None,
    edge_key=None,
):
    """Returns a graph from Pandas DataFrame containing an edge list.

    The Pandas DataFrame should contain at least two columns of node names and
    zero or more columns of edge attributes. Each row will be processed as one
    edge instance.

    Note: This function iterates over DataFrame.values, which is not
    guaranteed to retain the data type across columns in the row. This is only
    a problem if your row is entirely numeric and a mix of ints and floats. In
    that case, all values will be returned as floats. See the
    DataFrame.iterrows documentation for an example.

    Parameters
    ----------
    df : Pandas DataFrame
        An edge list representation of a graph

    source : str or int
        A valid column name (string or integer) for the source nodes (for the
        directed case).

    target : str or int
        A valid column name (string or integer) for the target nodes (for the
        directed case).

    edge_attr : str or int, iterable, True, or None
        A valid column name (str or int) or iterable of column names that are
        used to retrieve items and add them to the graph as edge attributes.
        If `True`, all of the remaining columns will be added.
        If `None`, no edge attributes are added to the graph.

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
        Graph type to create. If graph instance, then cleared before populated.

    edge_key : str or None, optional (default=None)
        A valid column name for the edge keys (for a MultiGraph). The values in
        this column are used for the edge keys when adding edges if create_using
        is a multigraph.

    If you have node attributes stored in a separate dataframe `df_nodes`,
    you can load those attributes to the graph `G` using the following code:

    ```
    df_nodes = pd.DataFrame({"node_id": [1, 2, 3], "attribute1": ["A", "B", "C"]})
    G.add_nodes_from((n, dict(d)) for n, d in df_nodes.iterrows())
    ```

    See Also
    --------
    to_pandas_edgelist

    Examples
    --------
    Simple integer weights on edges:

    >>> import pandas as pd
    >>> pd.options.display.max_columns = 20
    >>> import numpy as np
    >>> rng = np.random.RandomState(seed=5)
    >>> ints = rng.randint(1, 11, size=(3, 2))
    >>> a = ["A", "B", "C"]
    >>> b = ["D", "A", "E"]
    >>> df = pd.DataFrame(ints, columns=["weight", "cost"])
    >>> df[0] = a
    >>> df["b"] = b
    >>> df[["weight", "cost", 0, "b"]]
       weight  cost  0  b
    0       4     7  A  D
    1       7     1  B  A
    2      10     9  C  E
    >>> G = nx.from_pandas_edgelist(df, 0, "b", ["weight", "cost"])
    >>> G["E"]["C"]["weight"]
    10
    >>> G["E"]["C"]["cost"]
    9
    >>> edges = pd.DataFrame(
    ...     {
    ...         "source": [0, 1, 2],
    ...         "target": [2, 2, 3],
    ...         "weight": [3, 4, 5],
    ...         "color": ["red", "blue", "blue"],
    ...     }
    ... )
    >>> G = nx.from_pandas_edgelist(edges, edge_attr=True)
    >>> G[0][2]["color"]
    'red'

    Build multigraph with custom keys:

    >>> edges = pd.DataFrame(
    ...     {
    ...         "source": [0, 1, 2, 0],
    ...         "target": [2, 2, 3, 2],
    ...         "my_edge_key": ["A", "B", "C", "D"],
    ...         "weight": [3, 4, 5, 6],
    ...         "color": ["red", "blue", "blue", "blue"],
    ...     }
    ... )
    >>> G = nx.from_pandas_edgelist(
    ...     edges,
    ...     edge_key="my_edge_key",
    ...     edge_attr=["weight", "color"],
    ...     create_using=nx.MultiGraph(),
    ... )
    >>> G[0][2]
    AtlasView({'A': {'weight': 3, 'color': 'red'}, 'D': {'weight': 6, 'color': 'blue'}})


    """
    g = nx.empty_graph(0, create_using)

    if edge_attr is None:
        g.add_edges_from(zip(df[source], df[target]))
        return g

    reserved_columns = [source, target]

    # Additional columns requested
    attr_col_headings = []
    attribute_data = []
    if edge_attr is True:
        attr_col_headings = [c for c in df.columns if c not in reserved_columns]
    elif isinstance(edge_attr, (list, tuple)):
        attr_col_headings = edge_attr
    else:
        attr_col_headings = [edge_attr]
    if len(attr_col_headings) == 0:
        raise nx.NetworkXError(
            f"Invalid edge_attr argument: No columns found with name: {attr_col_headings}"
        )

    try:
        attribute_data = zip(*[df[col] for col in attr_col_headings])
    except (KeyError, TypeError) as err:
        msg = f"Invalid edge_attr argument: {edge_attr}"
        raise nx.NetworkXError(msg) from err

    if g.is_multigraph():
        # => append the edge keys from the df to the bundled data
        if edge_key is not None:
            try:
                multigraph_edge_keys = df[edge_key]
                attribute_data = zip(attribute_data, multigraph_edge_keys)
            except (KeyError, TypeError) as err:
                msg = f"Invalid edge_key argument: {edge_key}"
                raise nx.NetworkXError(msg) from err

        for s, t, attrs in zip(df[source], df[target], attribute_data):
            if edge_key is not None:
                attrs, multigraph_edge_key = attrs
                key = g.add_edge(s, t, key=multigraph_edge_key)
            else:
                key = g.add_edge(s, t)

            g[s][t][key].update(zip(attr_col_headings, attrs))
    else:
        for s, t, attrs in zip(df[source], df[target], attribute_data):
            g.add_edge(s, t)
            g[s][t].update(zip(attr_col_headings, attrs))

    return g


@nx._dispatch(edge_attrs="weight")
def to_scipy_sparse_array(G, nodelist=None, dtype=None, weight="weight", format="csr"):
    """Returns the graph adjacency matrix as a SciPy sparse array.

    Parameters
    ----------
    G : graph
        The NetworkX graph used to construct the sparse matrix.

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in `nodelist`.
       If `nodelist` is None, then the ordering is produced by G.nodes().

    dtype : NumPy data-type, optional
        A valid NumPy dtype used to initialize the array. If None, then the
        NumPy default is used.

    weight : string or None   optional (default='weight')
        The edge attribute that holds the numerical value used for
        the edge weight.  If None then all edge weights are 1.

    format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}
        The type of the matrix to be returned (default 'csr').  For
        some algorithms different implementations of sparse matrices
        can perform better.  See [1]_ for details.

    Returns
    -------
    A : SciPy sparse array
       Graph adjacency matrix.

    Notes
    -----
    For directed graphs, matrix entry i,j corresponds to an edge from i to j.

    The matrix entries are populated using the edge attribute held in
    parameter weight. When an edge does not have that attribute, the
    value of the entry is 1.

    For multiple edges the matrix values are the sums of the edge weights.

    When `nodelist` does not contain every node in `G`, the adjacency matrix
    is built from the subgraph of `G` that is induced by the nodes in
    `nodelist`.

    The convention used for self-loop edges in graphs is to assign the
    diagonal matrix entry value to the weight attribute of the edge
    (or the number 1 if the edge has no weight attribute).  If the
    alternate convention of doubling the edge weight is desired the
    resulting SciPy sparse array can be modified as follows:

    >>> G = nx.Graph([(1, 1)])
    >>> A = nx.to_scipy_sparse_array(G)
    >>> print(A.todense())
    [[1]]
    >>> A.setdiag(A.diagonal() * 2)
    >>> print(A.toarray())
    [[2]]

    Examples
    --------
    >>> G = nx.MultiDiGraph()
    >>> G.add_edge(0, 1, weight=2)
    0
    >>> G.add_edge(1, 0)
    0
    >>> G.add_edge(2, 2, weight=3)
    0
    >>> G.add_edge(2, 2)
    1
    >>> S = nx.to_scipy_sparse_array(G, nodelist=[0, 1, 2])
    >>> print(S.toarray())
    [[0 2 0]
     [1 0 0]
     [0 0 4]]

    References
    ----------
    .. [1] Scipy Dev. References, "Sparse Matrices",
       https://docs.scipy.org/doc/scipy/reference/sparse.html
    """
    import scipy as sp

    if len(G) == 0:
        raise nx.NetworkXError("Graph has no nodes or edges")

    if nodelist is None:
        nodelist = list(G)
        nlen = len(G)
    else:
        nlen = len(nodelist)
        if nlen == 0:
            raise nx.NetworkXError("nodelist has no nodes")
        nodeset = set(G.nbunch_iter(nodelist))
        if nlen != len(nodeset):
            for n in nodelist:
                if n not in G:
                    raise nx.NetworkXError(f"Node {n} in nodelist is not in G")
            raise nx.NetworkXError("nodelist contains duplicates.")
        if nlen < len(G):
            G = G.subgraph(nodelist)

    index = dict(zip(nodelist, range(nlen)))
    coefficients = zip(
        *((index[u], index[v], wt) for u, v, wt in G.edges(data=weight, default=1))
    )
    try:
        row, col, data = coefficients
    except ValueError:
        # there is no edge in the subgraph
        row, col, data = [], [], []

    if G.is_directed():
        A = sp.sparse.coo_array((data, (row, col)), shape=(nlen, nlen), dtype=dtype)
    else:
        # symmetrize matrix
        d = data + data
        r = row + col
        c = col + row
        # selfloop entries get double counted when symmetrizing
        # so we subtract the data on the diagonal
        selfloops = list(nx.selfloop_edges(G, data=weight, default=1))
        if selfloops:
            diag_index, diag_data = zip(*((index[u], -wt) for u, v, wt in selfloops))
            d += diag_data
            r += diag_index
            c += diag_index
        A = sp.sparse.coo_array((d, (r, c)), shape=(nlen, nlen), dtype=dtype)
    try:
        return A.asformat(format)
    except ValueError as err:
        raise nx.NetworkXError(f"Unknown sparse matrix format: {format}") from err


def _csr_gen_triples(A):
    """Converts a SciPy sparse array in **Compressed Sparse Row** format to
    an iterable of weighted edge triples.

    """
    nrows = A.shape[0]
    data, indices, indptr = A.data, A.indices, A.indptr
    for i in range(nrows):
        for j in range(indptr[i], indptr[i + 1]):
            yield i, int(indices[j]), data[j]


def _csc_gen_triples(A):
    """Converts a SciPy sparse array in **Compressed Sparse Column** format to
    an iterable of weighted edge triples.

    """
    ncols = A.shape[1]
    data, indices, indptr = A.data, A.indices, A.indptr
    for i in range(ncols):
        for j in range(indptr[i], indptr[i + 1]):
            yield int(indices[j]), i, data[j]


def _coo_gen_triples(A):
    """Converts a SciPy sparse array in **Coordinate** format to an iterable
    of weighted edge triples.

    """
    return ((int(i), int(j), d) for i, j, d in zip(A.row, A.col, A.data))


def _dok_gen_triples(A):
    """Converts a SciPy sparse array in **Dictionary of Keys** format to an
    iterable of weighted edge triples.

    """
    for (r, c), v in A.items():
        yield r, c, v


def _generate_weighted_edges(A):
    """Returns an iterable over (u, v, w) triples, where u and v are adjacent
    vertices and w is the weight of the edge joining u and v.

    `A` is a SciPy sparse array (in any format).

    """
    if A.format == "csr":
        return _csr_gen_triples(A)
    if A.format == "csc":
        return _csc_gen_triples(A)
    if A.format == "dok":
        return _dok_gen_triples(A)
    # If A is in any other format (including COO), convert it to COO format.
    return _coo_gen_triples(A.tocoo())


@nx._dispatch(graphs=None)
def from_scipy_sparse_array(
    A, parallel_edges=False, create_using=None, edge_attribute="weight"
):
    """Creates a new graph from an adjacency matrix given as a SciPy sparse
    array.

    Parameters
    ----------
    A: scipy.sparse array
      An adjacency matrix representation of a graph

    parallel_edges : Boolean
      If this is True, `create_using` is a multigraph, and `A` is an
      integer matrix, then entry *(i, j)* in the matrix is interpreted as the
      number of parallel edges joining vertices *i* and *j* in the graph.
      If it is False, then the entries in the matrix are interpreted as
      the weight of a single edge joining the vertices.

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
       Graph type to create. If graph instance, then cleared before populated.

    edge_attribute: string
       Name of edge attribute to store matrix numeric value. The data will
       have the same type as the matrix entry (int, float, (real,imag)).

    Notes
    -----
    For directed graphs, explicitly mention create_using=nx.DiGraph,
    and entry i,j of A corresponds to an edge from i to j.

    If `create_using` is :class:`networkx.MultiGraph` or
    :class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the
    entries of `A` are of type :class:`int`, then this function returns a
    multigraph (constructed from `create_using`) with parallel edges.
    In this case, `edge_attribute` will be ignored.

    If `create_using` indicates an undirected multigraph, then only the edges
    indicated by the upper triangle of the matrix `A` will be added to the
    graph.

    Examples
    --------
    >>> import scipy as sp
    >>> A = sp.sparse.eye(2, 2, 1)
    >>> G = nx.from_scipy_sparse_array(A)

    If `create_using` indicates a multigraph and the matrix has only integer
    entries and `parallel_edges` is False, then the entries will be treated
    as weights for edges joining the nodes (without creating parallel edges):

    >>> A = sp.sparse.csr_array([[1, 1], [1, 2]])
    >>> G = nx.from_scipy_sparse_array(A, create_using=nx.MultiGraph)
    >>> G[1][1]
    AtlasView({0: {'weight': 2}})

    If `create_using` indicates a multigraph and the matrix has only integer
    entries and `parallel_edges` is True, then the entries will be treated
    as the number of parallel edges joining those two vertices:

    >>> A = sp.sparse.csr_array([[1, 1], [1, 2]])
    >>> G = nx.from_scipy_sparse_array(
    ...     A, parallel_edges=True, create_using=nx.MultiGraph
    ... )
    >>> G[1][1]
    AtlasView({0: {'weight': 1}, 1: {'weight': 1}})

    """
    G = nx.empty_graph(0, create_using)
    n, m = A.shape
    if n != m:
        raise nx.NetworkXError(f"Adjacency matrix not square: nx,ny={A.shape}")
    # Make sure we get even the isolated nodes of the graph.
    G.add_nodes_from(range(n))
    # Create an iterable over (u, v, w) triples and for each triple, add an
    # edge from u to v with weight w.
    triples = _generate_weighted_edges(A)
    # If the entries in the adjacency matrix are integers, the graph is a
    # multigraph, and parallel_edges is True, then create parallel edges, each
    # with weight 1, for each entry in the adjacency matrix. Otherwise, create
    # one edge for each positive entry in the adjacency matrix and set the
    # weight of that edge to be the entry in the matrix.
    if A.dtype.kind in ("i", "u") and G.is_multigraph() and parallel_edges:
        chain = itertools.chain.from_iterable
        # The following line is equivalent to:
        #
        #     for (u, v) in edges:
        #         for d in range(A[u, v]):
        #             G.add_edge(u, v, weight=1)
        #
        triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples)
    # If we are creating an undirected multigraph, only add the edges from the
    # upper triangle of the matrix. Otherwise, add all the edges. This relies
    # on the fact that the vertices created in the
    # `_generated_weighted_edges()` function are actually the row/column
    # indices for the matrix `A`.
    #
    # Without this check, we run into a problem where each edge is added twice
    # when `G.add_weighted_edges_from()` is invoked below.
    if G.is_multigraph() and not G.is_directed():
        triples = ((u, v, d) for u, v, d in triples if u <= v)
    G.add_weighted_edges_from(triples, weight=edge_attribute)
    return G


@nx._dispatch(edge_attrs="weight")  # edge attrs may also be obtained from `dtype`
def to_numpy_array(
    G,
    nodelist=None,
    dtype=None,
    order=None,
    multigraph_weight=sum,
    weight="weight",
    nonedge=0.0,
):
    """Returns the graph adjacency matrix as a NumPy array.

    Parameters
    ----------
    G : graph
        The NetworkX graph used to construct the NumPy array.

    nodelist : list, optional
        The rows and columns are ordered according to the nodes in `nodelist`.
        If `nodelist` is ``None``, then the ordering is produced by ``G.nodes()``.

    dtype : NumPy data type, optional
        A NumPy data type used to initialize the array. If None, then the NumPy
        default is used. The dtype can be structured if `weight=None`, in which
        case the dtype field names are used to look up edge attributes. The
        result is a structured array where each named field in the dtype
        corresponds to the adjacency for that edge attribute. See examples for
        details.

    order : {'C', 'F'}, optional
        Whether to store multidimensional data in C- or Fortran-contiguous
        (row- or column-wise) order in memory. If None, then the NumPy default
        is used.

    multigraph_weight : callable, optional
        An function that determines how weights in multigraphs are handled.
        The function should accept a sequence of weights and return a single
        value. The default is to sum the weights of the multiple edges.

    weight : string or None optional (default = 'weight')
        The edge attribute that holds the numerical value used for
        the edge weight. If an edge does not have that attribute, then the
        value 1 is used instead. `weight` must be ``None`` if a structured
        dtype is used.

    nonedge : array_like (default = 0.0)
        The value used to represent non-edges in the adjacency matrix.
        The array values corresponding to nonedges are typically set to zero.
        However, this could be undesirable if there are array values
        corresponding to actual edges that also have the value zero. If so,
        one might prefer nonedges to have some other value, such as ``nan``.

    Returns
    -------
    A : NumPy ndarray
        Graph adjacency matrix

    Raises
    ------
    NetworkXError
        If `dtype` is a structured dtype and `G` is a multigraph
    ValueError
        If `dtype` is a structured dtype and `weight` is not `None`

    See Also
    --------
    from_numpy_array

    Notes
    -----
    For directed graphs, entry ``i, j`` corresponds to an edge from ``i`` to ``j``.

    Entries in the adjacency matrix are given by the `weight` edge attribute.
    When an edge does not have a weight attribute, the value of the entry is
    set to the number 1.  For multiple (parallel) edges, the values of the
    entries are determined by the `multigraph_weight` parameter. The default is
    to sum the weight attributes for each of the parallel edges.

    When `nodelist` does not contain every node in `G`, the adjacency matrix is
    built from the subgraph of `G` that is induced by the nodes in `nodelist`.

    The convention used for self-loop edges in graphs is to assign the
    diagonal array entry value to the weight attribute of the edge
    (or the number 1 if the edge has no weight attribute). If the
    alternate convention of doubling the edge weight is desired the
    resulting NumPy array can be modified as follows:

    >>> import numpy as np
    >>> G = nx.Graph([(1, 1)])
    >>> A = nx.to_numpy_array(G)
    >>> A
    array([[1.]])
    >>> A[np.diag_indices_from(A)] *= 2
    >>> A
    array([[2.]])

    Examples
    --------
    >>> G = nx.MultiDiGraph()
    >>> G.add_edge(0, 1, weight=2)
    0
    >>> G.add_edge(1, 0)
    0
    >>> G.add_edge(2, 2, weight=3)
    0
    >>> G.add_edge(2, 2)
    1
    >>> nx.to_numpy_array(G, nodelist=[0, 1, 2])
    array([[0., 2., 0.],
           [1., 0., 0.],
           [0., 0., 4.]])

    When `nodelist` argument is used, nodes of `G` which do not appear in the `nodelist`
    and their edges are not included in the adjacency matrix. Here is an example:

    >>> G = nx.Graph()
    >>> G.add_edge(3, 1)
    >>> G.add_edge(2, 0)
    >>> G.add_edge(2, 1)
    >>> G.add_edge(3, 0)
    >>> nx.to_numpy_array(G, nodelist=[1, 2, 3])
    array([[0., 1., 1.],
           [1., 0., 0.],
           [1., 0., 0.]])

    This function can also be used to create adjacency matrices for multiple
    edge attributes with structured dtypes:

    >>> G = nx.Graph()
    >>> G.add_edge(0, 1, weight=10)
    >>> G.add_edge(1, 2, cost=5)
    >>> G.add_edge(2, 3, weight=3, cost=-4.0)
    >>> dtype = np.dtype([("weight", int), ("cost", float)])
    >>> A = nx.to_numpy_array(G, dtype=dtype, weight=None)
    >>> A["weight"]
    array([[ 0, 10,  0,  0],
           [10,  0,  1,  0],
           [ 0,  1,  0,  3],
           [ 0,  0,  3,  0]])
    >>> A["cost"]
    array([[ 0.,  1.,  0.,  0.],
           [ 1.,  0.,  5.,  0.],
           [ 0.,  5.,  0., -4.],
           [ 0.,  0., -4.,  0.]])

    As stated above, the argument "nonedge" is useful especially when there are
    actually edges with weight 0 in the graph. Setting a nonedge value different than 0,
    makes it much clearer to differentiate such 0-weighted edges and actual nonedge values.

    >>> G = nx.Graph()
    >>> G.add_edge(3, 1, weight=2)
    >>> G.add_edge(2, 0, weight=0)
    >>> G.add_edge(2, 1, weight=0)
    >>> G.add_edge(3, 0, weight=1)
    >>> nx.to_numpy_array(G, nonedge=-1.)
    array([[-1.,  2., -1.,  1.],
           [ 2., -1.,  0., -1.],
           [-1.,  0., -1.,  0.],
           [ 1., -1.,  0., -1.]])
    """
    import numpy as np

    if nodelist is None:
        nodelist = list(G)
    nlen = len(nodelist)

    # Input validation
    nodeset = set(nodelist)
    if nodeset - set(G):
        raise nx.NetworkXError(f"Nodes {nodeset - set(G)} in nodelist is not in G")
    if len(nodeset) < nlen:
        raise nx.NetworkXError("nodelist contains duplicates.")

    A = np.full((nlen, nlen), fill_value=nonedge, dtype=dtype, order=order)

    # Corner cases: empty nodelist or graph without any edges
    if nlen == 0 or G.number_of_edges() == 0:
        return A

    # If dtype is structured and weight is None, use dtype field names as
    # edge attributes
    edge_attrs = None  # Only single edge attribute by default
    if A.dtype.names:
        if weight is None:
            edge_attrs = dtype.names
        else:
            raise ValueError(
                "Specifying `weight` not supported for structured dtypes\n."
                "To create adjacency matrices from structured dtypes, use `weight=None`."
            )

    # Map nodes to row/col in matrix
    idx = dict(zip(nodelist, range(nlen)))
    if len(nodelist) < len(G):
        G = G.subgraph(nodelist).copy()

    # Collect all edge weights and reduce with `multigraph_weights`
    if G.is_multigraph():
        if edge_attrs:
            raise nx.NetworkXError(
                "Structured arrays are not supported for MultiGraphs"
            )
        d = defaultdict(list)
        for u, v, wt in G.edges(data=weight, default=1.0):
            d[(idx[u], idx[v])].append(wt)
        i, j = np.array(list(d.keys())).T  # indices
        wts = [multigraph_weight(ws) for ws in d.values()]  # reduced weights
    else:
        i, j, wts = [], [], []

        # Special branch: multi-attr adjacency from structured dtypes
        if edge_attrs:
            # Extract edges with all data
            for u, v, data in G.edges(data=True):
                i.append(idx[u])
                j.append(idx[v])
                wts.append(data)
            # Map each attribute to the appropriate named field in the
            # structured dtype
            for attr in edge_attrs:
                attr_data = [wt.get(attr, 1.0) for wt in wts]
                A[attr][i, j] = attr_data
                if not G.is_directed():
                    A[attr][j, i] = attr_data
            return A

        for u, v, wt in G.edges(data=weight, default=1.0):
            i.append(idx[u])
            j.append(idx[v])
            wts.append(wt)

    # Set array values with advanced indexing
    A[i, j] = wts
    if not G.is_directed():
        A[j, i] = wts

    return A


@nx._dispatch(graphs=None)
def from_numpy_array(A, parallel_edges=False, create_using=None, edge_attr="weight"):
    """Returns a graph from a 2D NumPy array.

    The 2D NumPy array is interpreted as an adjacency matrix for the graph.

    Parameters
    ----------
    A : a 2D numpy.ndarray
        An adjacency matrix representation of a graph

    parallel_edges : Boolean
        If this is True, `create_using` is a multigraph, and `A` is an
        integer array, then entry *(i, j)* in the array is interpreted as the
        number of parallel edges joining vertices *i* and *j* in the graph.
        If it is False, then the entries in the array are interpreted as
        the weight of a single edge joining the vertices.

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
       Graph type to create. If graph instance, then cleared before populated.

    edge_attr : String, optional (default="weight")
        The attribute to which the array values are assigned on each edge. If
        it is None, edge attributes will not be assigned.

    Notes
    -----
    For directed graphs, explicitly mention create_using=nx.DiGraph,
    and entry i,j of A corresponds to an edge from i to j.

    If `create_using` is :class:`networkx.MultiGraph` or
    :class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the
    entries of `A` are of type :class:`int`, then this function returns a
    multigraph (of the same type as `create_using`) with parallel edges.

    If `create_using` indicates an undirected multigraph, then only the edges
    indicated by the upper triangle of the array `A` will be added to the
    graph.

    If `edge_attr` is Falsy (False or None), edge attributes will not be
    assigned, and the array data will be treated like a binary mask of
    edge presence or absence. Otherwise, the attributes will be assigned
    as follows:

    If the NumPy array has a single data type for each array entry it
    will be converted to an appropriate Python data type.

    If the NumPy array has a user-specified compound data type the names
    of the data fields will be used as attribute keys in the resulting
    NetworkX graph.

    See Also
    --------
    to_numpy_array

    Examples
    --------
    Simple integer weights on edges:

    >>> import numpy as np
    >>> A = np.array([[1, 1], [2, 1]])
    >>> G = nx.from_numpy_array(A)
    >>> G.edges(data=True)
    EdgeDataView([(0, 0, {'weight': 1}), (0, 1, {'weight': 2}), (1, 1, {'weight': 1})])

    If `create_using` indicates a multigraph and the array has only integer
    entries and `parallel_edges` is False, then the entries will be treated
    as weights for edges joining the nodes (without creating parallel edges):

    >>> A = np.array([[1, 1], [1, 2]])
    >>> G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
    >>> G[1][1]
    AtlasView({0: {'weight': 2}})

    If `create_using` indicates a multigraph and the array has only integer
    entries and `parallel_edges` is True, then the entries will be treated
    as the number of parallel edges joining those two vertices:

    >>> A = np.array([[1, 1], [1, 2]])
    >>> temp = nx.MultiGraph()
    >>> G = nx.from_numpy_array(A, parallel_edges=True, create_using=temp)
    >>> G[1][1]
    AtlasView({0: {'weight': 1}, 1: {'weight': 1}})

    User defined compound data type on edges:

    >>> dt = [("weight", float), ("cost", int)]
    >>> A = np.array([[(1.0, 2)]], dtype=dt)
    >>> G = nx.from_numpy_array(A)
    >>> G.edges()
    EdgeView([(0, 0)])
    >>> G[0][0]["cost"]
    2
    >>> G[0][0]["weight"]
    1.0

    """
    kind_to_python_type = {
        "f": float,
        "i": int,
        "u": int,
        "b": bool,
        "c": complex,
        "S": str,
        "U": str,
        "V": "void",
    }
    G = nx.empty_graph(0, create_using)
    if A.ndim != 2:
        raise nx.NetworkXError(f"Input array must be 2D, not {A.ndim}")
    n, m = A.shape
    if n != m:
        raise nx.NetworkXError(f"Adjacency matrix not square: nx,ny={A.shape}")
    dt = A.dtype
    try:
        python_type = kind_to_python_type[dt.kind]
    except Exception as err:
        raise TypeError(f"Unknown numpy data type: {dt}") from err

    # Make sure we get even the isolated nodes of the graph.
    G.add_nodes_from(range(n))
    # Get a list of all the entries in the array with nonzero entries. These
    # coordinates become edges in the graph. (convert to int from np.int64)
    edges = ((int(e[0]), int(e[1])) for e in zip(*A.nonzero()))
    # handle numpy constructed data type
    if python_type == "void":
        # Sort the fields by their offset, then by dtype, then by name.
        fields = sorted(
            (offset, dtype, name) for name, (dtype, offset) in A.dtype.fields.items()
        )
        triples = (
            (
                u,
                v,
                {}
                if edge_attr in [False, None]
                else {
                    name: kind_to_python_type[dtype.kind](val)
                    for (_, dtype, name), val in zip(fields, A[u, v])
                },
            )
            for u, v in edges
        )
    # If the entries in the adjacency matrix are integers, the graph is a
    # multigraph, and parallel_edges is True, then create parallel edges, each
    # with weight 1, for each entry in the adjacency matrix. Otherwise, create
    # one edge for each positive entry in the adjacency matrix and set the
    # weight of that edge to be the entry in the matrix.
    elif python_type is int and G.is_multigraph() and parallel_edges:
        chain = itertools.chain.from_iterable
        # The following line is equivalent to:
        #
        #     for (u, v) in edges:
        #         for d in range(A[u, v]):
        #             G.add_edge(u, v, weight=1)
        #
        if edge_attr in [False, None]:
            triples = chain(((u, v, {}) for d in range(A[u, v])) for (u, v) in edges)
        else:
            triples = chain(
                ((u, v, {edge_attr: 1}) for d in range(A[u, v])) for (u, v) in edges
            )
    else:  # basic data type
        if edge_attr in [False, None]:
            triples = ((u, v, {}) for u, v in edges)
        else:
            triples = ((u, v, {edge_attr: python_type(A[u, v])}) for u, v in edges)
    # If we are creating an undirected multigraph, only add the edges from the
    # upper triangle of the matrix. Otherwise, add all the edges. This relies
    # on the fact that the vertices created in the
    # `_generated_weighted_edges()` function are actually the row/column
    # indices for the matrix `A`.
    #
    # Without this check, we run into a problem where each edge is added twice
    # when `G.add_edges_from()` is invoked below.
    if G.is_multigraph() and not G.is_directed():
        triples = ((u, v, d) for u, v, d in triples if u <= v)
    G.add_edges_from(triples)
    return G