File size: 4,028 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""
Generators for random intersection graphs.
"""
import networkx as nx
from networkx.utils import py_random_state

__all__ = [
    "uniform_random_intersection_graph",
    "k_random_intersection_graph",
    "general_random_intersection_graph",
]


@py_random_state(3)
@nx._dispatch(graphs=None)
def uniform_random_intersection_graph(n, m, p, seed=None):
    """Returns a uniform random intersection graph.

    Parameters
    ----------
    n : int
        The number of nodes in the first bipartite set (nodes)
    m : int
        The number of nodes in the second bipartite set (attributes)
    p : float
        Probability of connecting nodes between bipartite sets
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    See Also
    --------
    gnp_random_graph

    References
    ----------
    .. [1] K.B. Singer-Cohen, Random Intersection Graphs, 1995,
       PhD thesis, Johns Hopkins University
    .. [2] Fill, J. A., Scheinerman, E. R., and Singer-Cohen, K. B.,
       Random intersection graphs when m = !(n):
       An equivalence theorem relating the evolution of the g(n, m, p)
       and g(n, p) models. Random Struct. Algorithms 16, 2 (2000), 156–176.
    """
    from networkx.algorithms import bipartite

    G = bipartite.random_graph(n, m, p, seed)
    return nx.projected_graph(G, range(n))


@py_random_state(3)
@nx._dispatch(graphs=None)
def k_random_intersection_graph(n, m, k, seed=None):
    """Returns a intersection graph with randomly chosen attribute sets for
    each node that are of equal size (k).

    Parameters
    ----------
    n : int
        The number of nodes in the first bipartite set (nodes)
    m : int
        The number of nodes in the second bipartite set (attributes)
    k : float
        Size of attribute set to assign to each node.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    See Also
    --------
    gnp_random_graph, uniform_random_intersection_graph

    References
    ----------
    .. [1] Godehardt, E., and Jaworski, J.
       Two models of random intersection graphs and their applications.
       Electronic Notes in Discrete Mathematics 10 (2001), 129--132.
    """
    G = nx.empty_graph(n + m)
    mset = range(n, n + m)
    for v in range(n):
        targets = seed.sample(mset, k)
        G.add_edges_from(zip([v] * len(targets), targets))
    return nx.projected_graph(G, range(n))


@py_random_state(3)
@nx._dispatch(graphs=None)
def general_random_intersection_graph(n, m, p, seed=None):
    """Returns a random intersection graph with independent probabilities
    for connections between node and attribute sets.

    Parameters
    ----------
    n : int
        The number of nodes in the first bipartite set (nodes)
    m : int
        The number of nodes in the second bipartite set (attributes)
    p : list of floats of length m
        Probabilities for connecting nodes to each attribute
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    See Also
    --------
    gnp_random_graph, uniform_random_intersection_graph

    References
    ----------
    .. [1] Nikoletseas, S. E., Raptopoulos, C., and Spirakis, P. G.
       The existence and efficient construction of large independent sets
       in general random intersection graphs. In ICALP (2004), J. D´ıaz,
       J. Karhum¨aki, A. Lepist¨o, and D. Sannella, Eds., vol. 3142
       of Lecture Notes in Computer Science, Springer, pp. 1029–1040.
    """
    if len(p) != m:
        raise ValueError("Probability list p must have m elements.")
    G = nx.empty_graph(n + m)
    mset = range(n, n + m)
    for u in range(n):
        for v, q in zip(mset, p):
            if seed.random() < q:
                G.add_edge(u, v)
    return nx.projected_graph(G, range(n))