File size: 39,183 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
"""
*******
GraphML
*******
Read and write graphs in GraphML format.

.. warning::

    This parser uses the standard xml library present in Python, which is
    insecure - see :external+python:mod:`xml` for additional information.
    Only parse GraphML files you trust.

This implementation does not support mixed graphs (directed and unidirected
edges together), hyperedges, nested graphs, or ports.

"GraphML is a comprehensive and easy-to-use file format for graphs. It
consists of a language core to describe the structural properties of a
graph and a flexible extension mechanism to add application-specific
data. Its main features include support of

    * directed, undirected, and mixed graphs,
    * hypergraphs,
    * hierarchical graphs,
    * graphical representations,
    * references to external data,
    * application-specific attribute data, and
    * light-weight parsers.

Unlike many other file formats for graphs, GraphML does not use a
custom syntax. Instead, it is based on XML and hence ideally suited as
a common denominator for all kinds of services generating, archiving,
or processing graphs."

http://graphml.graphdrawing.org/

Format
------
GraphML is an XML format.  See
http://graphml.graphdrawing.org/specification.html for the specification and
http://graphml.graphdrawing.org/primer/graphml-primer.html
for examples.
"""
import warnings
from collections import defaultdict

import networkx as nx
from networkx.utils import open_file

__all__ = [
    "write_graphml",
    "read_graphml",
    "generate_graphml",
    "write_graphml_xml",
    "write_graphml_lxml",
    "parse_graphml",
    "GraphMLWriter",
    "GraphMLReader",
]


@open_file(1, mode="wb")
def write_graphml_xml(
    G,
    path,
    encoding="utf-8",
    prettyprint=True,
    infer_numeric_types=False,
    named_key_ids=False,
    edge_id_from_attribute=None,
):
    """Write G in GraphML XML format to path

    Parameters
    ----------
    G : graph
       A networkx graph
    path : file or string
       File or filename to write.
       Filenames ending in .gz or .bz2 will be compressed.
    encoding : string (optional)
       Encoding for text data.
    prettyprint : bool (optional)
       If True use line breaks and indenting in output XML.
    infer_numeric_types : boolean
       Determine if numeric types should be generalized.
       For example, if edges have both int and float 'weight' attributes,
       we infer in GraphML that both are floats.
    named_key_ids : bool (optional)
       If True use attr.name as value for key elements' id attribute.
    edge_id_from_attribute : dict key (optional)
        If provided, the graphml edge id is set by looking up the corresponding
        edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
        the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> nx.write_graphml(G, "test.graphml")

    Notes
    -----
    This implementation does not support mixed graphs (directed
    and unidirected edges together) hyperedges, nested graphs, or ports.
    """
    writer = GraphMLWriter(
        encoding=encoding,
        prettyprint=prettyprint,
        infer_numeric_types=infer_numeric_types,
        named_key_ids=named_key_ids,
        edge_id_from_attribute=edge_id_from_attribute,
    )
    writer.add_graph_element(G)
    writer.dump(path)


@open_file(1, mode="wb")
def write_graphml_lxml(
    G,
    path,
    encoding="utf-8",
    prettyprint=True,
    infer_numeric_types=False,
    named_key_ids=False,
    edge_id_from_attribute=None,
):
    """Write G in GraphML XML format to path

    This function uses the LXML framework and should be faster than
    the version using the xml library.

    Parameters
    ----------
    G : graph
       A networkx graph
    path : file or string
       File or filename to write.
       Filenames ending in .gz or .bz2 will be compressed.
    encoding : string (optional)
       Encoding for text data.
    prettyprint : bool (optional)
       If True use line breaks and indenting in output XML.
    infer_numeric_types : boolean
       Determine if numeric types should be generalized.
       For example, if edges have both int and float 'weight' attributes,
       we infer in GraphML that both are floats.
    named_key_ids : bool (optional)
       If True use attr.name as value for key elements' id attribute.
    edge_id_from_attribute : dict key (optional)
        If provided, the graphml edge id is set by looking up the corresponding
        edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
        the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> nx.write_graphml_lxml(G, "fourpath.graphml")

    Notes
    -----
    This implementation does not support mixed graphs (directed
    and unidirected edges together) hyperedges, nested graphs, or ports.
    """
    try:
        import lxml.etree as lxmletree
    except ImportError:
        return write_graphml_xml(
            G,
            path,
            encoding,
            prettyprint,
            infer_numeric_types,
            named_key_ids,
            edge_id_from_attribute,
        )

    writer = GraphMLWriterLxml(
        path,
        graph=G,
        encoding=encoding,
        prettyprint=prettyprint,
        infer_numeric_types=infer_numeric_types,
        named_key_ids=named_key_ids,
        edge_id_from_attribute=edge_id_from_attribute,
    )
    writer.dump()


def generate_graphml(
    G,
    encoding="utf-8",
    prettyprint=True,
    named_key_ids=False,
    edge_id_from_attribute=None,
):
    """Generate GraphML lines for G

    Parameters
    ----------
    G : graph
       A networkx graph
    encoding : string (optional)
       Encoding for text data.
    prettyprint : bool (optional)
       If True use line breaks and indenting in output XML.
    named_key_ids : bool (optional)
       If True use attr.name as value for key elements' id attribute.
    edge_id_from_attribute : dict key (optional)
        If provided, the graphml edge id is set by looking up the corresponding
        edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
        the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> linefeed = chr(10)  # linefeed = \n
    >>> s = linefeed.join(nx.generate_graphml(G))
    >>> for line in nx.generate_graphml(G):  # doctest: +SKIP
    ...     print(line)

    Notes
    -----
    This implementation does not support mixed graphs (directed and unidirected
    edges together) hyperedges, nested graphs, or ports.
    """
    writer = GraphMLWriter(
        encoding=encoding,
        prettyprint=prettyprint,
        named_key_ids=named_key_ids,
        edge_id_from_attribute=edge_id_from_attribute,
    )
    writer.add_graph_element(G)
    yield from str(writer).splitlines()


@open_file(0, mode="rb")
@nx._dispatch(graphs=None)
def read_graphml(path, node_type=str, edge_key_type=int, force_multigraph=False):
    """Read graph in GraphML format from path.

    Parameters
    ----------
    path : file or string
       File or filename to write.
       Filenames ending in .gz or .bz2 will be compressed.

    node_type: Python type (default: str)
       Convert node ids to this type

    edge_key_type: Python type (default: int)
       Convert graphml edge ids to this type. Multigraphs use id as edge key.
       Non-multigraphs add to edge attribute dict with name "id".

    force_multigraph : bool (default: False)
       If True, return a multigraph with edge keys. If False (the default)
       return a multigraph when multiedges are in the graph.

    Returns
    -------
    graph: NetworkX graph
        If parallel edges are present or `force_multigraph=True` then
        a MultiGraph or MultiDiGraph is returned. Otherwise a Graph/DiGraph.
        The returned graph is directed if the file indicates it should be.

    Notes
    -----
    Default node and edge attributes are not propagated to each node and edge.
    They can be obtained from `G.graph` and applied to node and edge attributes
    if desired using something like this:

    >>> default_color = G.graph["node_default"]["color"]  # doctest: +SKIP
    >>> for node, data in G.nodes(data=True):  # doctest: +SKIP
    ...     if "color" not in data:
    ...         data["color"] = default_color
    >>> default_color = G.graph["edge_default"]["color"]  # doctest: +SKIP
    >>> for u, v, data in G.edges(data=True):  # doctest: +SKIP
    ...     if "color" not in data:
    ...         data["color"] = default_color

    This implementation does not support mixed graphs (directed and unidirected
    edges together), hypergraphs, nested graphs, or ports.

    For multigraphs the GraphML edge "id" will be used as the edge
    key.  If not specified then they "key" attribute will be used.  If
    there is no "key" attribute a default NetworkX multigraph edge key
    will be provided.

    Files with the yEd "yfiles" extension can be read. The type of the node's
    shape is preserved in the `shape_type` node attribute.

    yEd compressed files ("file.graphmlz" extension) can be read by renaming
    the file to "file.graphml.gz".

    """
    reader = GraphMLReader(node_type, edge_key_type, force_multigraph)
    # need to check for multiple graphs
    glist = list(reader(path=path))
    if len(glist) == 0:
        # If no graph comes back, try looking for an incomplete header
        header = b'<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
        path.seek(0)
        old_bytes = path.read()
        new_bytes = old_bytes.replace(b"<graphml>", header)
        glist = list(reader(string=new_bytes))
        if len(glist) == 0:
            raise nx.NetworkXError("file not successfully read as graphml")
    return glist[0]


@nx._dispatch(graphs=None)
def parse_graphml(
    graphml_string, node_type=str, edge_key_type=int, force_multigraph=False
):
    """Read graph in GraphML format from string.

    Parameters
    ----------
    graphml_string : string
       String containing graphml information
       (e.g., contents of a graphml file).

    node_type: Python type (default: str)
       Convert node ids to this type

    edge_key_type: Python type (default: int)
       Convert graphml edge ids to this type. Multigraphs use id as edge key.
       Non-multigraphs add to edge attribute dict with name "id".

    force_multigraph : bool (default: False)
       If True, return a multigraph with edge keys. If False (the default)
       return a multigraph when multiedges are in the graph.


    Returns
    -------
    graph: NetworkX graph
        If no parallel edges are found a Graph or DiGraph is returned.
        Otherwise a MultiGraph or MultiDiGraph is returned.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> linefeed = chr(10)  # linefeed = \n
    >>> s = linefeed.join(nx.generate_graphml(G))
    >>> H = nx.parse_graphml(s)

    Notes
    -----
    Default node and edge attributes are not propagated to each node and edge.
    They can be obtained from `G.graph` and applied to node and edge attributes
    if desired using something like this:

    >>> default_color = G.graph["node_default"]["color"]  # doctest: +SKIP
    >>> for node, data in G.nodes(data=True):  # doctest: +SKIP
    ...     if "color" not in data:
    ...         data["color"] = default_color
    >>> default_color = G.graph["edge_default"]["color"]  # doctest: +SKIP
    >>> for u, v, data in G.edges(data=True):  # doctest: +SKIP
    ...     if "color" not in data:
    ...         data["color"] = default_color

    This implementation does not support mixed graphs (directed and unidirected
    edges together), hypergraphs, nested graphs, or ports.

    For multigraphs the GraphML edge "id" will be used as the edge
    key.  If not specified then they "key" attribute will be used.  If
    there is no "key" attribute a default NetworkX multigraph edge key
    will be provided.

    """
    reader = GraphMLReader(node_type, edge_key_type, force_multigraph)
    # need to check for multiple graphs
    glist = list(reader(string=graphml_string))
    if len(glist) == 0:
        # If no graph comes back, try looking for an incomplete header
        header = '<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
        new_string = graphml_string.replace("<graphml>", header)
        glist = list(reader(string=new_string))
        if len(glist) == 0:
            raise nx.NetworkXError("file not successfully read as graphml")
    return glist[0]


class GraphML:
    NS_GRAPHML = "http://graphml.graphdrawing.org/xmlns"
    NS_XSI = "http://www.w3.org/2001/XMLSchema-instance"
    # xmlns:y="http://www.yworks.com/xml/graphml"
    NS_Y = "http://www.yworks.com/xml/graphml"
    SCHEMALOCATION = " ".join(
        [
            "http://graphml.graphdrawing.org/xmlns",
            "http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd",
        ]
    )

    def construct_types(self):
        types = [
            (int, "integer"),  # for Gephi GraphML bug
            (str, "yfiles"),
            (str, "string"),
            (int, "int"),
            (int, "long"),
            (float, "float"),
            (float, "double"),
            (bool, "boolean"),
        ]

        # These additions to types allow writing numpy types
        try:
            import numpy as np
        except:
            pass
        else:
            # prepend so that python types are created upon read (last entry wins)
            types = [
                (np.float64, "float"),
                (np.float32, "float"),
                (np.float16, "float"),
                (np.int_, "int"),
                (np.int8, "int"),
                (np.int16, "int"),
                (np.int32, "int"),
                (np.int64, "int"),
                (np.uint8, "int"),
                (np.uint16, "int"),
                (np.uint32, "int"),
                (np.uint64, "int"),
                (np.int_, "int"),
                (np.intc, "int"),
                (np.intp, "int"),
            ] + types

        self.xml_type = dict(types)
        self.python_type = dict(reversed(a) for a in types)

    # This page says that data types in GraphML follow Java(TM).
    #  http://graphml.graphdrawing.org/primer/graphml-primer.html#AttributesDefinition
    # true and false are the only boolean literals:
    #  http://en.wikibooks.org/wiki/Java_Programming/Literals#Boolean_Literals
    convert_bool = {
        # We use data.lower() in actual use.
        "true": True,
        "false": False,
        # Include integer strings for convenience.
        "0": False,
        0: False,
        "1": True,
        1: True,
    }

    def get_xml_type(self, key):
        """Wrapper around the xml_type dict that raises a more informative
        exception message when a user attempts to use data of a type not
        supported by GraphML."""
        try:
            return self.xml_type[key]
        except KeyError as err:
            raise TypeError(
                f"GraphML does not support type {type(key)} as data values."
            ) from err


class GraphMLWriter(GraphML):
    def __init__(
        self,
        graph=None,
        encoding="utf-8",
        prettyprint=True,
        infer_numeric_types=False,
        named_key_ids=False,
        edge_id_from_attribute=None,
    ):
        self.construct_types()
        from xml.etree.ElementTree import Element

        self.myElement = Element

        self.infer_numeric_types = infer_numeric_types
        self.prettyprint = prettyprint
        self.named_key_ids = named_key_ids
        self.edge_id_from_attribute = edge_id_from_attribute
        self.encoding = encoding
        self.xml = self.myElement(
            "graphml",
            {
                "xmlns": self.NS_GRAPHML,
                "xmlns:xsi": self.NS_XSI,
                "xsi:schemaLocation": self.SCHEMALOCATION,
            },
        )
        self.keys = {}
        self.attributes = defaultdict(list)
        self.attribute_types = defaultdict(set)

        if graph is not None:
            self.add_graph_element(graph)

    def __str__(self):
        from xml.etree.ElementTree import tostring

        if self.prettyprint:
            self.indent(self.xml)
        s = tostring(self.xml).decode(self.encoding)
        return s

    def attr_type(self, name, scope, value):
        """Infer the attribute type of data named name. Currently this only
        supports inference of numeric types.

        If self.infer_numeric_types is false, type is used. Otherwise, pick the
        most general of types found across all values with name and scope. This
        means edges with data named 'weight' are treated separately from nodes
        with data named 'weight'.
        """
        if self.infer_numeric_types:
            types = self.attribute_types[(name, scope)]

            if len(types) > 1:
                types = {self.get_xml_type(t) for t in types}
                if "string" in types:
                    return str
                elif "float" in types or "double" in types:
                    return float
                else:
                    return int
            else:
                return list(types)[0]
        else:
            return type(value)

    def get_key(self, name, attr_type, scope, default):
        keys_key = (name, attr_type, scope)
        try:
            return self.keys[keys_key]
        except KeyError:
            if self.named_key_ids:
                new_id = name
            else:
                new_id = f"d{len(list(self.keys))}"

            self.keys[keys_key] = new_id
            key_kwargs = {
                "id": new_id,
                "for": scope,
                "attr.name": name,
                "attr.type": attr_type,
            }
            key_element = self.myElement("key", **key_kwargs)
            # add subelement for data default value if present
            if default is not None:
                default_element = self.myElement("default")
                default_element.text = str(default)
                key_element.append(default_element)
            self.xml.insert(0, key_element)
        return new_id

    def add_data(self, name, element_type, value, scope="all", default=None):
        """
        Make a data element for an edge or a node. Keep a log of the
        type in the keys table.
        """
        if element_type not in self.xml_type:
            raise nx.NetworkXError(
                f"GraphML writer does not support {element_type} as data values."
            )
        keyid = self.get_key(name, self.get_xml_type(element_type), scope, default)
        data_element = self.myElement("data", key=keyid)
        data_element.text = str(value)
        return data_element

    def add_attributes(self, scope, xml_obj, data, default):
        """Appends attribute data to edges or nodes, and stores type information
        to be added later. See add_graph_element.
        """
        for k, v in data.items():
            self.attribute_types[(str(k), scope)].add(type(v))
            self.attributes[xml_obj].append([k, v, scope, default.get(k)])

    def add_nodes(self, G, graph_element):
        default = G.graph.get("node_default", {})
        for node, data in G.nodes(data=True):
            node_element = self.myElement("node", id=str(node))
            self.add_attributes("node", node_element, data, default)
            graph_element.append(node_element)

    def add_edges(self, G, graph_element):
        if G.is_multigraph():
            for u, v, key, data in G.edges(data=True, keys=True):
                edge_element = self.myElement(
                    "edge",
                    source=str(u),
                    target=str(v),
                    id=str(data.get(self.edge_id_from_attribute))
                    if self.edge_id_from_attribute
                    and self.edge_id_from_attribute in data
                    else str(key),
                )
                default = G.graph.get("edge_default", {})
                self.add_attributes("edge", edge_element, data, default)
                graph_element.append(edge_element)
        else:
            for u, v, data in G.edges(data=True):
                if self.edge_id_from_attribute and self.edge_id_from_attribute in data:
                    # select attribute to be edge id
                    edge_element = self.myElement(
                        "edge",
                        source=str(u),
                        target=str(v),
                        id=str(data.get(self.edge_id_from_attribute)),
                    )
                else:
                    # default: no edge id
                    edge_element = self.myElement("edge", source=str(u), target=str(v))
                default = G.graph.get("edge_default", {})
                self.add_attributes("edge", edge_element, data, default)
                graph_element.append(edge_element)

    def add_graph_element(self, G):
        """
        Serialize graph G in GraphML to the stream.
        """
        if G.is_directed():
            default_edge_type = "directed"
        else:
            default_edge_type = "undirected"

        graphid = G.graph.pop("id", None)
        if graphid is None:
            graph_element = self.myElement("graph", edgedefault=default_edge_type)
        else:
            graph_element = self.myElement(
                "graph", edgedefault=default_edge_type, id=graphid
            )
        default = {}
        data = {
            k: v
            for (k, v) in G.graph.items()
            if k not in ["node_default", "edge_default"]
        }
        self.add_attributes("graph", graph_element, data, default)
        self.add_nodes(G, graph_element)
        self.add_edges(G, graph_element)

        # self.attributes contains a mapping from XML Objects to a list of
        # data that needs to be added to them.
        # We postpone processing in order to do type inference/generalization.
        # See self.attr_type
        for xml_obj, data in self.attributes.items():
            for k, v, scope, default in data:
                xml_obj.append(
                    self.add_data(
                        str(k), self.attr_type(k, scope, v), str(v), scope, default
                    )
                )
        self.xml.append(graph_element)

    def add_graphs(self, graph_list):
        """Add many graphs to this GraphML document."""
        for G in graph_list:
            self.add_graph_element(G)

    def dump(self, stream):
        from xml.etree.ElementTree import ElementTree

        if self.prettyprint:
            self.indent(self.xml)
        document = ElementTree(self.xml)
        document.write(stream, encoding=self.encoding, xml_declaration=True)

    def indent(self, elem, level=0):
        # in-place prettyprint formatter
        i = "\n" + level * "  "
        if len(elem):
            if not elem.text or not elem.text.strip():
                elem.text = i + "  "
            if not elem.tail or not elem.tail.strip():
                elem.tail = i
            for elem in elem:
                self.indent(elem, level + 1)
            if not elem.tail or not elem.tail.strip():
                elem.tail = i
        else:
            if level and (not elem.tail or not elem.tail.strip()):
                elem.tail = i


class IncrementalElement:
    """Wrapper for _IncrementalWriter providing an Element like interface.

    This wrapper does not intend to be a complete implementation but rather to
    deal with those calls used in GraphMLWriter.
    """

    def __init__(self, xml, prettyprint):
        self.xml = xml
        self.prettyprint = prettyprint

    def append(self, element):
        self.xml.write(element, pretty_print=self.prettyprint)


class GraphMLWriterLxml(GraphMLWriter):
    def __init__(
        self,
        path,
        graph=None,
        encoding="utf-8",
        prettyprint=True,
        infer_numeric_types=False,
        named_key_ids=False,
        edge_id_from_attribute=None,
    ):
        self.construct_types()
        import lxml.etree as lxmletree

        self.myElement = lxmletree.Element

        self._encoding = encoding
        self._prettyprint = prettyprint
        self.named_key_ids = named_key_ids
        self.edge_id_from_attribute = edge_id_from_attribute
        self.infer_numeric_types = infer_numeric_types

        self._xml_base = lxmletree.xmlfile(path, encoding=encoding)
        self._xml = self._xml_base.__enter__()
        self._xml.write_declaration()

        # We need to have a xml variable that support insertion. This call is
        # used for adding the keys to the document.
        # We will store those keys in a plain list, and then after the graph
        # element is closed we will add them to the main graphml element.
        self.xml = []
        self._keys = self.xml
        self._graphml = self._xml.element(
            "graphml",
            {
                "xmlns": self.NS_GRAPHML,
                "xmlns:xsi": self.NS_XSI,
                "xsi:schemaLocation": self.SCHEMALOCATION,
            },
        )
        self._graphml.__enter__()
        self.keys = {}
        self.attribute_types = defaultdict(set)

        if graph is not None:
            self.add_graph_element(graph)

    def add_graph_element(self, G):
        """
        Serialize graph G in GraphML to the stream.
        """
        if G.is_directed():
            default_edge_type = "directed"
        else:
            default_edge_type = "undirected"

        graphid = G.graph.pop("id", None)
        if graphid is None:
            graph_element = self._xml.element("graph", edgedefault=default_edge_type)
        else:
            graph_element = self._xml.element(
                "graph", edgedefault=default_edge_type, id=graphid
            )

        # gather attributes types for the whole graph
        # to find the most general numeric format needed.
        # Then pass through attributes to create key_id for each.
        graphdata = {
            k: v
            for k, v in G.graph.items()
            if k not in ("node_default", "edge_default")
        }
        node_default = G.graph.get("node_default", {})
        edge_default = G.graph.get("edge_default", {})
        # Graph attributes
        for k, v in graphdata.items():
            self.attribute_types[(str(k), "graph")].add(type(v))
        for k, v in graphdata.items():
            element_type = self.get_xml_type(self.attr_type(k, "graph", v))
            self.get_key(str(k), element_type, "graph", None)
        # Nodes and data
        for node, d in G.nodes(data=True):
            for k, v in d.items():
                self.attribute_types[(str(k), "node")].add(type(v))
        for node, d in G.nodes(data=True):
            for k, v in d.items():
                T = self.get_xml_type(self.attr_type(k, "node", v))
                self.get_key(str(k), T, "node", node_default.get(k))
        # Edges and data
        if G.is_multigraph():
            for u, v, ekey, d in G.edges(keys=True, data=True):
                for k, v in d.items():
                    self.attribute_types[(str(k), "edge")].add(type(v))
            for u, v, ekey, d in G.edges(keys=True, data=True):
                for k, v in d.items():
                    T = self.get_xml_type(self.attr_type(k, "edge", v))
                    self.get_key(str(k), T, "edge", edge_default.get(k))
        else:
            for u, v, d in G.edges(data=True):
                for k, v in d.items():
                    self.attribute_types[(str(k), "edge")].add(type(v))
            for u, v, d in G.edges(data=True):
                for k, v in d.items():
                    T = self.get_xml_type(self.attr_type(k, "edge", v))
                    self.get_key(str(k), T, "edge", edge_default.get(k))

        # Now add attribute keys to the xml file
        for key in self.xml:
            self._xml.write(key, pretty_print=self._prettyprint)

        # The incremental_writer writes each node/edge as it is created
        incremental_writer = IncrementalElement(self._xml, self._prettyprint)
        with graph_element:
            self.add_attributes("graph", incremental_writer, graphdata, {})
            self.add_nodes(G, incremental_writer)  # adds attributes too
            self.add_edges(G, incremental_writer)  # adds attributes too

    def add_attributes(self, scope, xml_obj, data, default):
        """Appends attribute data."""
        for k, v in data.items():
            data_element = self.add_data(
                str(k), self.attr_type(str(k), scope, v), str(v), scope, default.get(k)
            )
            xml_obj.append(data_element)

    def __str__(self):
        return object.__str__(self)

    def dump(self):
        self._graphml.__exit__(None, None, None)
        self._xml_base.__exit__(None, None, None)


# default is lxml is present.
write_graphml = write_graphml_lxml


class GraphMLReader(GraphML):
    """Read a GraphML document.  Produces NetworkX graph objects."""

    def __init__(self, node_type=str, edge_key_type=int, force_multigraph=False):
        self.construct_types()
        self.node_type = node_type
        self.edge_key_type = edge_key_type
        self.multigraph = force_multigraph  # If False, test for multiedges
        self.edge_ids = {}  # dict mapping (u,v) tuples to edge id attributes

    def __call__(self, path=None, string=None):
        from xml.etree.ElementTree import ElementTree, fromstring

        if path is not None:
            self.xml = ElementTree(file=path)
        elif string is not None:
            self.xml = fromstring(string)
        else:
            raise ValueError("Must specify either 'path' or 'string' as kwarg")
        (keys, defaults) = self.find_graphml_keys(self.xml)
        for g in self.xml.findall(f"{{{self.NS_GRAPHML}}}graph"):
            yield self.make_graph(g, keys, defaults)

    def make_graph(self, graph_xml, graphml_keys, defaults, G=None):
        # set default graph type
        edgedefault = graph_xml.get("edgedefault", None)
        if G is None:
            if edgedefault == "directed":
                G = nx.MultiDiGraph()
            else:
                G = nx.MultiGraph()
        # set defaults for graph attributes
        G.graph["node_default"] = {}
        G.graph["edge_default"] = {}
        for key_id, value in defaults.items():
            key_for = graphml_keys[key_id]["for"]
            name = graphml_keys[key_id]["name"]
            python_type = graphml_keys[key_id]["type"]
            if key_for == "node":
                G.graph["node_default"].update({name: python_type(value)})
            if key_for == "edge":
                G.graph["edge_default"].update({name: python_type(value)})
        # hyperedges are not supported
        hyperedge = graph_xml.find(f"{{{self.NS_GRAPHML}}}hyperedge")
        if hyperedge is not None:
            raise nx.NetworkXError("GraphML reader doesn't support hyperedges")
        # add nodes
        for node_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}node"):
            self.add_node(G, node_xml, graphml_keys, defaults)
        # add edges
        for edge_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}edge"):
            self.add_edge(G, edge_xml, graphml_keys)
        # add graph data
        data = self.decode_data_elements(graphml_keys, graph_xml)
        G.graph.update(data)

        # switch to Graph or DiGraph if no parallel edges were found
        if self.multigraph:
            return G

        G = nx.DiGraph(G) if G.is_directed() else nx.Graph(G)
        # add explicit edge "id" from file as attribute in NX graph.
        nx.set_edge_attributes(G, values=self.edge_ids, name="id")
        return G

    def add_node(self, G, node_xml, graphml_keys, defaults):
        """Add a node to the graph."""
        # warn on finding unsupported ports tag
        ports = node_xml.find(f"{{{self.NS_GRAPHML}}}port")
        if ports is not None:
            warnings.warn("GraphML port tag not supported.")
        # find the node by id and cast it to the appropriate type
        node_id = self.node_type(node_xml.get("id"))
        # get data/attributes for node
        data = self.decode_data_elements(graphml_keys, node_xml)
        G.add_node(node_id, **data)
        # get child nodes
        if node_xml.attrib.get("yfiles.foldertype") == "group":
            graph_xml = node_xml.find(f"{{{self.NS_GRAPHML}}}graph")
            self.make_graph(graph_xml, graphml_keys, defaults, G)

    def add_edge(self, G, edge_element, graphml_keys):
        """Add an edge to the graph."""
        # warn on finding unsupported ports tag
        ports = edge_element.find(f"{{{self.NS_GRAPHML}}}port")
        if ports is not None:
            warnings.warn("GraphML port tag not supported.")

        # raise error if we find mixed directed and undirected edges
        directed = edge_element.get("directed")
        if G.is_directed() and directed == "false":
            msg = "directed=false edge found in directed graph."
            raise nx.NetworkXError(msg)
        if (not G.is_directed()) and directed == "true":
            msg = "directed=true edge found in undirected graph."
            raise nx.NetworkXError(msg)

        source = self.node_type(edge_element.get("source"))
        target = self.node_type(edge_element.get("target"))
        data = self.decode_data_elements(graphml_keys, edge_element)
        # GraphML stores edge ids as an attribute
        # NetworkX uses them as keys in multigraphs too if no key
        # attribute is specified
        edge_id = edge_element.get("id")
        if edge_id:
            # self.edge_ids is used by `make_graph` method for non-multigraphs
            self.edge_ids[source, target] = edge_id
            try:
                edge_id = self.edge_key_type(edge_id)
            except ValueError:  # Could not convert.
                pass
        else:
            edge_id = data.get("key")

        if G.has_edge(source, target):
            # mark this as a multigraph
            self.multigraph = True

        # Use add_edges_from to avoid error with add_edge when `'key' in data`
        # Note there is only one edge here...
        G.add_edges_from([(source, target, edge_id, data)])

    def decode_data_elements(self, graphml_keys, obj_xml):
        """Use the key information to decode the data XML if present."""
        data = {}
        for data_element in obj_xml.findall(f"{{{self.NS_GRAPHML}}}data"):
            key = data_element.get("key")
            try:
                data_name = graphml_keys[key]["name"]
                data_type = graphml_keys[key]["type"]
            except KeyError as err:
                raise nx.NetworkXError(f"Bad GraphML data: no key {key}") from err
            text = data_element.text
            # assume anything with subelements is a yfiles extension
            if text is not None and len(list(data_element)) == 0:
                if data_type == bool:
                    # Ignore cases.
                    # http://docs.oracle.com/javase/6/docs/api/java/lang/
                    # Boolean.html#parseBoolean%28java.lang.String%29
                    data[data_name] = self.convert_bool[text.lower()]
                else:
                    data[data_name] = data_type(text)
            elif len(list(data_element)) > 0:
                # Assume yfiles as subelements, try to extract node_label
                node_label = None
                # set GenericNode's configuration as shape type
                gn = data_element.find(f"{{{self.NS_Y}}}GenericNode")
                if gn:
                    data["shape_type"] = gn.get("configuration")
                for node_type in ["GenericNode", "ShapeNode", "SVGNode", "ImageNode"]:
                    pref = f"{{{self.NS_Y}}}{node_type}/{{{self.NS_Y}}}"
                    geometry = data_element.find(f"{pref}Geometry")
                    if geometry is not None:
                        data["x"] = geometry.get("x")
                        data["y"] = geometry.get("y")
                    if node_label is None:
                        node_label = data_element.find(f"{pref}NodeLabel")
                    shape = data_element.find(f"{pref}Shape")
                    if shape is not None:
                        data["shape_type"] = shape.get("type")
                if node_label is not None:
                    data["label"] = node_label.text

                # check all the different types of edges available in yEd.
                for edge_type in [
                    "PolyLineEdge",
                    "SplineEdge",
                    "QuadCurveEdge",
                    "BezierEdge",
                    "ArcEdge",
                ]:
                    pref = f"{{{self.NS_Y}}}{edge_type}/{{{self.NS_Y}}}"
                    edge_label = data_element.find(f"{pref}EdgeLabel")
                    if edge_label is not None:
                        break

                if edge_label is not None:
                    data["label"] = edge_label.text
        return data

    def find_graphml_keys(self, graph_element):
        """Extracts all the keys and key defaults from the xml."""
        graphml_keys = {}
        graphml_key_defaults = {}
        for k in graph_element.findall(f"{{{self.NS_GRAPHML}}}key"):
            attr_id = k.get("id")
            attr_type = k.get("attr.type")
            attr_name = k.get("attr.name")
            yfiles_type = k.get("yfiles.type")
            if yfiles_type is not None:
                attr_name = yfiles_type
                attr_type = "yfiles"
            if attr_type is None:
                attr_type = "string"
                warnings.warn(f"No key type for id {attr_id}. Using string")
            if attr_name is None:
                raise nx.NetworkXError(f"Unknown key for id {attr_id}.")
            graphml_keys[attr_id] = {
                "name": attr_name,
                "type": self.python_type[attr_type],
                "for": k.get("for"),
            }
            # check for "default" sub-element of key element
            default = k.find(f"{{{self.NS_GRAPHML}}}default")
            if default is not None:
                # Handle default values identically to data element values
                python_type = graphml_keys[attr_id]["type"]
                if python_type == bool:
                    graphml_key_defaults[attr_id] = self.convert_bool[
                        default.text.lower()
                    ]
                else:
                    graphml_key_defaults[attr_id] = python_type(default.text)
        return graphml_keys, graphml_key_defaults