Spaces:
Running
Running
File size: 14,951 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import pytest
np = pytest.importorskip("numpy")
npt = pytest.importorskip("numpy.testing")
import networkx as nx
from networkx.generators.classic import barbell_graph, cycle_graph, path_graph
from networkx.utils import graphs_equal
class TestConvertNumpyArray:
def setup_method(self):
self.G1 = barbell_graph(10, 3)
self.G2 = cycle_graph(10, create_using=nx.DiGraph)
self.G3 = self.create_weighted(nx.Graph())
self.G4 = self.create_weighted(nx.DiGraph())
def create_weighted(self, G):
g = cycle_graph(4)
G.add_nodes_from(g)
G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges())
return G
def assert_equal(self, G1, G2):
assert sorted(G1.nodes()) == sorted(G2.nodes())
assert sorted(G1.edges()) == sorted(G2.edges())
def identity_conversion(self, G, A, create_using):
assert A.sum() > 0
GG = nx.from_numpy_array(A, create_using=create_using)
self.assert_equal(G, GG)
GW = nx.to_networkx_graph(A, create_using=create_using)
self.assert_equal(G, GW)
GI = nx.empty_graph(0, create_using).__class__(A)
self.assert_equal(G, GI)
def test_shape(self):
"Conversion from non-square array."
A = np.array([[1, 2, 3], [4, 5, 6]])
pytest.raises(nx.NetworkXError, nx.from_numpy_array, A)
def test_identity_graph_array(self):
"Conversion from graph to array to graph."
A = nx.to_numpy_array(self.G1)
self.identity_conversion(self.G1, A, nx.Graph())
def test_identity_digraph_array(self):
"""Conversion from digraph to array to digraph."""
A = nx.to_numpy_array(self.G2)
self.identity_conversion(self.G2, A, nx.DiGraph())
def test_identity_weighted_graph_array(self):
"""Conversion from weighted graph to array to weighted graph."""
A = nx.to_numpy_array(self.G3)
self.identity_conversion(self.G3, A, nx.Graph())
def test_identity_weighted_digraph_array(self):
"""Conversion from weighted digraph to array to weighted digraph."""
A = nx.to_numpy_array(self.G4)
self.identity_conversion(self.G4, A, nx.DiGraph())
def test_nodelist(self):
"""Conversion from graph to array to graph with nodelist."""
P4 = path_graph(4)
P3 = path_graph(3)
nodelist = list(P3)
A = nx.to_numpy_array(P4, nodelist=nodelist)
GA = nx.Graph(A)
self.assert_equal(GA, P3)
# Make nodelist ambiguous by containing duplicates.
nodelist += [nodelist[0]]
pytest.raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist)
# Make nodelist invalid by including nonexistent nodes
nodelist = [-1, 0, 1]
with pytest.raises(
nx.NetworkXError,
match=f"Nodes {nodelist - P3.nodes} in nodelist is not in G",
):
nx.to_numpy_array(P3, nodelist=nodelist)
def test_weight_keyword(self):
WP4 = nx.Graph()
WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3))
P4 = path_graph(4)
A = nx.to_numpy_array(P4)
np.testing.assert_equal(A, nx.to_numpy_array(WP4, weight=None))
np.testing.assert_equal(0.5 * A, nx.to_numpy_array(WP4))
np.testing.assert_equal(0.3 * A, nx.to_numpy_array(WP4, weight="other"))
def test_from_numpy_array_type(self):
A = np.array([[1]])
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == int
A = np.array([[1]]).astype(float)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == float
A = np.array([[1]]).astype(str)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == str
A = np.array([[1]]).astype(bool)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == bool
A = np.array([[1]]).astype(complex)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == complex
A = np.array([[1]]).astype(object)
pytest.raises(TypeError, nx.from_numpy_array, A)
A = np.array([[[1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1]]])
with pytest.raises(
nx.NetworkXError, match=f"Input array must be 2D, not {A.ndim}"
):
g = nx.from_numpy_array(A)
def test_from_numpy_array_dtype(self):
dt = [("weight", float), ("cost", int)]
A = np.array([[(1.0, 2)]], dtype=dt)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == float
assert type(G[0][0]["cost"]) == int
assert G[0][0]["cost"] == 2
assert G[0][0]["weight"] == 1.0
def test_from_numpy_array_parallel_edges(self):
"""Tests that the :func:`networkx.from_numpy_array` function
interprets integer weights as the number of parallel edges when
creating a multigraph.
"""
A = np.array([[1, 1], [1, 2]])
# First, with a simple graph, each integer entry in the adjacency
# matrix is interpreted as the weight of a single edge in the graph.
expected = nx.DiGraph()
edges = [(0, 0), (0, 1), (1, 0)]
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
expected.add_edge(1, 1, weight=2)
actual = nx.from_numpy_array(A, parallel_edges=True, create_using=nx.DiGraph)
assert graphs_equal(actual, expected)
actual = nx.from_numpy_array(A, parallel_edges=False, create_using=nx.DiGraph)
assert graphs_equal(actual, expected)
# Now each integer entry in the adjacency matrix is interpreted as the
# number of parallel edges in the graph if the appropriate keyword
# argument is specified.
edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
expected = nx.MultiDiGraph()
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
actual = nx.from_numpy_array(
A, parallel_edges=True, create_using=nx.MultiDiGraph
)
assert graphs_equal(actual, expected)
expected = nx.MultiDiGraph()
expected.add_edges_from(set(edges), weight=1)
# The sole self-loop (edge 0) on vertex 1 should have weight 2.
expected[1][1][0]["weight"] = 2
actual = nx.from_numpy_array(
A, parallel_edges=False, create_using=nx.MultiDiGraph
)
assert graphs_equal(actual, expected)
@pytest.mark.parametrize(
"dt",
(
None, # default
int, # integer dtype
np.dtype(
[("weight", "f8"), ("color", "i1")]
), # Structured dtype with named fields
),
)
def test_from_numpy_array_no_edge_attr(self, dt):
A = np.array([[0, 1], [1, 0]], dtype=dt)
G = nx.from_numpy_array(A, edge_attr=None)
assert "weight" not in G.edges[0, 1]
assert len(G.edges[0, 1]) == 0
def test_from_numpy_array_multiedge_no_edge_attr(self):
A = np.array([[0, 2], [2, 0]])
G = nx.from_numpy_array(A, create_using=nx.MultiDiGraph, edge_attr=None)
assert all("weight" not in e for _, e in G[0][1].items())
assert len(G[0][1][0]) == 0
def test_from_numpy_array_custom_edge_attr(self):
A = np.array([[0, 2], [3, 0]])
G = nx.from_numpy_array(A, edge_attr="cost")
assert "weight" not in G.edges[0, 1]
assert G.edges[0, 1]["cost"] == 3
def test_symmetric(self):
"""Tests that a symmetric array has edges added only once to an
undirected multigraph when using :func:`networkx.from_numpy_array`.
"""
A = np.array([[0, 1], [1, 0]])
G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
expected = nx.MultiGraph()
expected.add_edge(0, 1, weight=1)
assert graphs_equal(G, expected)
def test_dtype_int_graph(self):
"""Test that setting dtype int actually gives an integer array.
For more information, see GitHub pull request #1363.
"""
G = nx.complete_graph(3)
A = nx.to_numpy_array(G, dtype=int)
assert A.dtype == int
def test_dtype_int_multigraph(self):
"""Test that setting dtype int actually gives an integer array.
For more information, see GitHub pull request #1363.
"""
G = nx.MultiGraph(nx.complete_graph(3))
A = nx.to_numpy_array(G, dtype=int)
assert A.dtype == int
@pytest.fixture
def multigraph_test_graph():
G = nx.MultiGraph()
G.add_edge(1, 2, weight=7)
G.add_edge(1, 2, weight=70)
return G
@pytest.mark.parametrize(("operator", "expected"), ((sum, 77), (min, 7), (max, 70)))
def test_numpy_multigraph(multigraph_test_graph, operator, expected):
A = nx.to_numpy_array(multigraph_test_graph, multigraph_weight=operator)
assert A[1, 0] == expected
def test_to_numpy_array_multigraph_nodelist(multigraph_test_graph):
G = multigraph_test_graph
G.add_edge(0, 1, weight=3)
A = nx.to_numpy_array(G, nodelist=[1, 2])
assert A.shape == (2, 2)
assert A[1, 0] == 77
@pytest.mark.parametrize(
"G, expected",
[
(nx.Graph(), np.array([[0, 1 + 2j], [1 + 2j, 0]], dtype=complex)),
(nx.DiGraph(), np.array([[0, 1 + 2j], [0, 0]], dtype=complex)),
],
)
def test_to_numpy_array_complex_weights(G, expected):
G.add_edge(0, 1, weight=1 + 2j)
A = nx.to_numpy_array(G, dtype=complex)
npt.assert_array_equal(A, expected)
def test_to_numpy_array_arbitrary_weights():
G = nx.DiGraph()
w = 922337203685477580102 # Out of range for int64
G.add_edge(0, 1, weight=922337203685477580102) # val not representable by int64
A = nx.to_numpy_array(G, dtype=object)
expected = np.array([[0, w], [0, 0]], dtype=object)
npt.assert_array_equal(A, expected)
# Undirected
A = nx.to_numpy_array(G.to_undirected(), dtype=object)
expected = np.array([[0, w], [w, 0]], dtype=object)
npt.assert_array_equal(A, expected)
@pytest.mark.parametrize(
"func, expected",
((min, -1), (max, 10), (sum, 11), (np.mean, 11 / 3), (np.median, 2)),
)
def test_to_numpy_array_multiweight_reduction(func, expected):
"""Test various functions for reducing multiedge weights."""
G = nx.MultiDiGraph()
weights = [-1, 2, 10.0]
for w in weights:
G.add_edge(0, 1, weight=w)
A = nx.to_numpy_array(G, multigraph_weight=func, dtype=float)
assert np.allclose(A, [[0, expected], [0, 0]])
# Undirected case
A = nx.to_numpy_array(G.to_undirected(), multigraph_weight=func, dtype=float)
assert np.allclose(A, [[0, expected], [expected, 0]])
@pytest.mark.parametrize(
("G, expected"),
[
(nx.Graph(), [[(0, 0), (10, 5)], [(10, 5), (0, 0)]]),
(nx.DiGraph(), [[(0, 0), (10, 5)], [(0, 0), (0, 0)]]),
],
)
def test_to_numpy_array_structured_dtype_attrs_from_fields(G, expected):
"""When `dtype` is structured (i.e. has names) and `weight` is None, use
the named fields of the dtype to look up edge attributes."""
G.add_edge(0, 1, weight=10, cost=5.0)
dtype = np.dtype([("weight", int), ("cost", int)])
A = nx.to_numpy_array(G, dtype=dtype, weight=None)
expected = np.asarray(expected, dtype=dtype)
npt.assert_array_equal(A, expected)
def test_to_numpy_array_structured_dtype_single_attr_default():
G = nx.path_graph(3)
dtype = np.dtype([("weight", float)]) # A single named field
A = nx.to_numpy_array(G, dtype=dtype, weight=None)
expected = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=float)
npt.assert_array_equal(A["weight"], expected)
@pytest.mark.parametrize(
("field_name", "expected_attr_val"),
[
("weight", 1),
("cost", 3),
],
)
def test_to_numpy_array_structured_dtype_single_attr(field_name, expected_attr_val):
G = nx.Graph()
G.add_edge(0, 1, cost=3)
dtype = np.dtype([(field_name, float)])
A = nx.to_numpy_array(G, dtype=dtype, weight=None)
expected = np.array([[0, expected_attr_val], [expected_attr_val, 0]], dtype=float)
npt.assert_array_equal(A[field_name], expected)
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
@pytest.mark.parametrize(
"edge",
[
(0, 1), # No edge attributes
(0, 1, {"weight": 10}), # One edge attr
(0, 1, {"weight": 5, "flow": -4}), # Multiple but not all edge attrs
(0, 1, {"weight": 2.0, "cost": 10, "flow": -45}), # All attrs
],
)
def test_to_numpy_array_structured_dtype_multiple_fields(graph_type, edge):
G = graph_type([edge])
dtype = np.dtype([("weight", float), ("cost", float), ("flow", float)])
A = nx.to_numpy_array(G, dtype=dtype, weight=None)
for attr in dtype.names:
expected = nx.to_numpy_array(G, dtype=float, weight=attr)
npt.assert_array_equal(A[attr], expected)
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
def test_to_numpy_array_structured_dtype_scalar_nonedge(G):
G.add_edge(0, 1, weight=10)
dtype = np.dtype([("weight", float), ("cost", float)])
A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=np.nan)
for attr in dtype.names:
expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=np.nan)
npt.assert_array_equal(A[attr], expected)
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
def test_to_numpy_array_structured_dtype_nonedge_ary(G):
"""Similar to the scalar case, except has a different non-edge value for
each named field."""
G.add_edge(0, 1, weight=10)
dtype = np.dtype([("weight", float), ("cost", float)])
nonedges = np.array([(0, np.inf)], dtype=dtype)
A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=nonedges)
for attr in dtype.names:
nonedge = nonedges[attr]
expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=nonedge)
npt.assert_array_equal(A[attr], expected)
def test_to_numpy_array_structured_dtype_with_weight_raises():
"""Using both a structured dtype (with named fields) and specifying a `weight`
parameter is ambiguous."""
G = nx.path_graph(3)
dtype = np.dtype([("weight", int), ("cost", int)])
exception_msg = "Specifying `weight` not supported for structured dtypes"
with pytest.raises(ValueError, match=exception_msg):
nx.to_numpy_array(G, dtype=dtype) # Default is weight="weight"
with pytest.raises(ValueError, match=exception_msg):
nx.to_numpy_array(G, dtype=dtype, weight="cost")
@pytest.mark.parametrize("graph_type", (nx.MultiGraph, nx.MultiDiGraph))
def test_to_numpy_array_structured_multigraph_raises(graph_type):
G = nx.path_graph(3, create_using=graph_type)
dtype = np.dtype([("weight", int), ("cost", int)])
with pytest.raises(nx.NetworkXError, match="Structured arrays are not supported"):
nx.to_numpy_array(G, dtype=dtype, weight=None)
|