Spaces:
Running
Running
File size: 14,351 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
"""
Miscellaneous Helpers for NetworkX.
These are not imported into the base networkx namespace but
can be accessed, for example, as
>>> import networkx
>>> networkx.utils.make_list_of_ints({1, 2, 3})
[1, 2, 3]
>>> networkx.utils.arbitrary_element({5, 1, 7}) # doctest: +SKIP
1
"""
import sys
import uuid
import warnings
from collections import defaultdict, deque
from collections.abc import Iterable, Iterator, Sized
from itertools import chain, tee
import networkx as nx
__all__ = [
"flatten",
"make_list_of_ints",
"dict_to_numpy_array",
"arbitrary_element",
"pairwise",
"groups",
"create_random_state",
"create_py_random_state",
"PythonRandomInterface",
"nodes_equal",
"edges_equal",
"graphs_equal",
]
# some cookbook stuff
# used in deciding whether something is a bunch of nodes, edges, etc.
# see G.add_nodes and others in Graph Class in networkx/base.py
def flatten(obj, result=None):
"""Return flattened version of (possibly nested) iterable object."""
if not isinstance(obj, (Iterable, Sized)) or isinstance(obj, str):
return obj
if result is None:
result = []
for item in obj:
if not isinstance(item, (Iterable, Sized)) or isinstance(item, str):
result.append(item)
else:
flatten(item, result)
return tuple(result)
def make_list_of_ints(sequence):
"""Return list of ints from sequence of integral numbers.
All elements of the sequence must satisfy int(element) == element
or a ValueError is raised. Sequence is iterated through once.
If sequence is a list, the non-int values are replaced with ints.
So, no new list is created
"""
if not isinstance(sequence, list):
result = []
for i in sequence:
errmsg = f"sequence is not all integers: {i}"
try:
ii = int(i)
except ValueError:
raise nx.NetworkXError(errmsg) from None
if ii != i:
raise nx.NetworkXError(errmsg)
result.append(ii)
return result
# original sequence is a list... in-place conversion to ints
for indx, i in enumerate(sequence):
errmsg = f"sequence is not all integers: {i}"
if isinstance(i, int):
continue
try:
ii = int(i)
except ValueError:
raise nx.NetworkXError(errmsg) from None
if ii != i:
raise nx.NetworkXError(errmsg)
sequence[indx] = ii
return sequence
def dict_to_numpy_array(d, mapping=None):
"""Convert a dictionary of dictionaries to a numpy array
with optional mapping."""
try:
return _dict_to_numpy_array2(d, mapping)
except (AttributeError, TypeError):
# AttributeError is when no mapping was provided and v.keys() fails.
# TypeError is when a mapping was provided and d[k1][k2] fails.
return _dict_to_numpy_array1(d, mapping)
def _dict_to_numpy_array2(d, mapping=None):
"""Convert a dictionary of dictionaries to a 2d numpy array
with optional mapping.
"""
import numpy as np
if mapping is None:
s = set(d.keys())
for k, v in d.items():
s.update(v.keys())
mapping = dict(zip(s, range(len(s))))
n = len(mapping)
a = np.zeros((n, n))
for k1, i in mapping.items():
for k2, j in mapping.items():
try:
a[i, j] = d[k1][k2]
except KeyError:
pass
return a
def _dict_to_numpy_array1(d, mapping=None):
"""Convert a dictionary of numbers to a 1d numpy array with optional mapping."""
import numpy as np
if mapping is None:
s = set(d.keys())
mapping = dict(zip(s, range(len(s))))
n = len(mapping)
a = np.zeros(n)
for k1, i in mapping.items():
i = mapping[k1]
a[i] = d[k1]
return a
def arbitrary_element(iterable):
"""Returns an arbitrary element of `iterable` without removing it.
This is most useful for "peeking" at an arbitrary element of a set,
but can be used for any list, dictionary, etc., as well.
Parameters
----------
iterable : `abc.collections.Iterable` instance
Any object that implements ``__iter__``, e.g. set, dict, list, tuple,
etc.
Returns
-------
The object that results from ``next(iter(iterable))``
Raises
------
ValueError
If `iterable` is an iterator (because the current implementation of
this function would consume an element from the iterator).
Examples
--------
Arbitrary elements from common Iterable objects:
>>> nx.utils.arbitrary_element([1, 2, 3]) # list
1
>>> nx.utils.arbitrary_element((1, 2, 3)) # tuple
1
>>> nx.utils.arbitrary_element({1, 2, 3}) # set
1
>>> d = {k: v for k, v in zip([1, 2, 3], [3, 2, 1])}
>>> nx.utils.arbitrary_element(d) # dict_keys
1
>>> nx.utils.arbitrary_element(d.values()) # dict values
3
`str` is also an Iterable:
>>> nx.utils.arbitrary_element("hello")
'h'
:exc:`ValueError` is raised if `iterable` is an iterator:
>>> iterator = iter([1, 2, 3]) # Iterator, *not* Iterable
>>> nx.utils.arbitrary_element(iterator)
Traceback (most recent call last):
...
ValueError: cannot return an arbitrary item from an iterator
Notes
-----
This function does not return a *random* element. If `iterable` is
ordered, sequential calls will return the same value::
>>> l = [1, 2, 3]
>>> nx.utils.arbitrary_element(l)
1
>>> nx.utils.arbitrary_element(l)
1
"""
if isinstance(iterable, Iterator):
raise ValueError("cannot return an arbitrary item from an iterator")
# Another possible implementation is ``for x in iterable: return x``.
return next(iter(iterable))
# Recipe from the itertools documentation.
def pairwise(iterable, cyclic=False):
"s -> (s0, s1), (s1, s2), (s2, s3), ..."
a, b = tee(iterable)
first = next(b, None)
if cyclic is True:
return zip(a, chain(b, (first,)))
return zip(a, b)
def groups(many_to_one):
"""Converts a many-to-one mapping into a one-to-many mapping.
`many_to_one` must be a dictionary whose keys and values are all
:term:`hashable`.
The return value is a dictionary mapping values from `many_to_one`
to sets of keys from `many_to_one` that have that value.
Examples
--------
>>> from networkx.utils import groups
>>> many_to_one = {"a": 1, "b": 1, "c": 2, "d": 3, "e": 3}
>>> groups(many_to_one) # doctest: +SKIP
{1: {'a', 'b'}, 2: {'c'}, 3: {'e', 'd'}}
"""
one_to_many = defaultdict(set)
for v, k in many_to_one.items():
one_to_many[k].add(v)
return dict(one_to_many)
def create_random_state(random_state=None):
"""Returns a numpy.random.RandomState or numpy.random.Generator instance
depending on input.
Parameters
----------
random_state : int or NumPy RandomState or Generator instance, optional (default=None)
If int, return a numpy.random.RandomState instance set with seed=int.
if `numpy.random.RandomState` instance, return it.
if `numpy.random.Generator` instance, return it.
if None or numpy.random, return the global random number generator used
by numpy.random.
"""
import numpy as np
if random_state is None or random_state is np.random:
return np.random.mtrand._rand
if isinstance(random_state, np.random.RandomState):
return random_state
if isinstance(random_state, int):
return np.random.RandomState(random_state)
if isinstance(random_state, np.random.Generator):
return random_state
msg = (
f"{random_state} cannot be used to create a numpy.random.RandomState or\n"
"numpy.random.Generator instance"
)
raise ValueError(msg)
class PythonRandomInterface:
def __init__(self, rng=None):
try:
import numpy as np
except ImportError:
msg = "numpy not found, only random.random available."
warnings.warn(msg, ImportWarning)
if rng is None:
self._rng = np.random.mtrand._rand
else:
self._rng = rng
def random(self):
return self._rng.random()
def uniform(self, a, b):
return a + (b - a) * self._rng.random()
def randrange(self, a, b=None):
import numpy as np
if isinstance(self._rng, np.random.Generator):
return self._rng.integers(a, b)
return self._rng.randint(a, b)
# NOTE: the numpy implementations of `choice` don't support strings, so
# this cannot be replaced with self._rng.choice
def choice(self, seq):
import numpy as np
if isinstance(self._rng, np.random.Generator):
idx = self._rng.integers(0, len(seq))
else:
idx = self._rng.randint(0, len(seq))
return seq[idx]
def gauss(self, mu, sigma):
return self._rng.normal(mu, sigma)
def shuffle(self, seq):
return self._rng.shuffle(seq)
# Some methods don't match API for numpy RandomState.
# Commented out versions are not used by NetworkX
def sample(self, seq, k):
return self._rng.choice(list(seq), size=(k,), replace=False)
def randint(self, a, b):
import numpy as np
if isinstance(self._rng, np.random.Generator):
return self._rng.integers(a, b + 1)
return self._rng.randint(a, b + 1)
# exponential as expovariate with 1/argument,
def expovariate(self, scale):
return self._rng.exponential(1 / scale)
# pareto as paretovariate with 1/argument,
def paretovariate(self, shape):
return self._rng.pareto(shape)
# weibull as weibullvariate multiplied by beta,
# def weibullvariate(self, alpha, beta):
# return self._rng.weibull(alpha) * beta
#
# def triangular(self, low, high, mode):
# return self._rng.triangular(low, mode, high)
#
# def choices(self, seq, weights=None, cum_weights=None, k=1):
# return self._rng.choice(seq
def create_py_random_state(random_state=None):
"""Returns a random.Random instance depending on input.
Parameters
----------
random_state : int or random number generator or None (default=None)
If int, return a random.Random instance set with seed=int.
if random.Random instance, return it.
if None or the `random` package, return the global random number
generator used by `random`.
if np.random package, return the global numpy random number
generator wrapped in a PythonRandomInterface class.
if np.random.RandomState or np.random.Generator instance, return it
wrapped in PythonRandomInterface
if a PythonRandomInterface instance, return it
"""
import random
try:
import numpy as np
if random_state is np.random:
return PythonRandomInterface(np.random.mtrand._rand)
if isinstance(random_state, (np.random.RandomState, np.random.Generator)):
return PythonRandomInterface(random_state)
if isinstance(random_state, PythonRandomInterface):
return random_state
except ImportError:
pass
if random_state is None or random_state is random:
return random._inst
if isinstance(random_state, random.Random):
return random_state
if isinstance(random_state, int):
return random.Random(random_state)
msg = f"{random_state} cannot be used to generate a random.Random instance"
raise ValueError(msg)
def nodes_equal(nodes1, nodes2):
"""Check if nodes are equal.
Equality here means equal as Python objects.
Node data must match if included.
The order of nodes is not relevant.
Parameters
----------
nodes1, nodes2 : iterables of nodes, or (node, datadict) tuples
Returns
-------
bool
True if nodes are equal, False otherwise.
"""
nlist1 = list(nodes1)
nlist2 = list(nodes2)
try:
d1 = dict(nlist1)
d2 = dict(nlist2)
except (ValueError, TypeError):
d1 = dict.fromkeys(nlist1)
d2 = dict.fromkeys(nlist2)
return d1 == d2
def edges_equal(edges1, edges2):
"""Check if edges are equal.
Equality here means equal as Python objects.
Edge data must match if included.
The order of the edges is not relevant.
Parameters
----------
edges1, edges2 : iterables of with u, v nodes as
edge tuples (u, v), or
edge tuples with data dicts (u, v, d), or
edge tuples with keys and data dicts (u, v, k, d)
Returns
-------
bool
True if edges are equal, False otherwise.
"""
from collections import defaultdict
d1 = defaultdict(dict)
d2 = defaultdict(dict)
c1 = 0
for c1, e in enumerate(edges1):
u, v = e[0], e[1]
data = [e[2:]]
if v in d1[u]:
data = d1[u][v] + data
d1[u][v] = data
d1[v][u] = data
c2 = 0
for c2, e in enumerate(edges2):
u, v = e[0], e[1]
data = [e[2:]]
if v in d2[u]:
data = d2[u][v] + data
d2[u][v] = data
d2[v][u] = data
if c1 != c2:
return False
# can check one direction because lengths are the same.
for n, nbrdict in d1.items():
for nbr, datalist in nbrdict.items():
if n not in d2:
return False
if nbr not in d2[n]:
return False
d2datalist = d2[n][nbr]
for data in datalist:
if datalist.count(data) != d2datalist.count(data):
return False
return True
def graphs_equal(graph1, graph2):
"""Check if graphs are equal.
Equality here means equal as Python objects (not isomorphism).
Node, edge and graph data must match.
Parameters
----------
graph1, graph2 : graph
Returns
-------
bool
True if graphs are equal, False otherwise.
"""
return (
graph1.adj == graph2.adj
and graph1.nodes == graph2.nodes
and graph1.graph == graph2.graph
)
|