File size: 4,623 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""
Cuthill-McKee ordering of graph nodes to produce sparse matrices
"""
from collections import deque
from operator import itemgetter

import networkx as nx

from ..utils import arbitrary_element

__all__ = ["cuthill_mckee_ordering", "reverse_cuthill_mckee_ordering"]


def cuthill_mckee_ordering(G, heuristic=None):
    """Generate an ordering (permutation) of the graph nodes to make
    a sparse matrix.

    Uses the Cuthill-McKee heuristic (based on breadth-first search) [1]_.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    heuristic : function, optional
      Function to choose starting node for RCM algorithm.  If None
      a node from a pseudo-peripheral pair is used.  A user-defined function
      can be supplied that takes a graph object and returns a single node.

    Returns
    -------
    nodes : generator
       Generator of nodes in Cuthill-McKee ordering.

    Examples
    --------
    >>> from networkx.utils import cuthill_mckee_ordering
    >>> G = nx.path_graph(4)
    >>> rcm = list(cuthill_mckee_ordering(G))
    >>> A = nx.adjacency_matrix(G, nodelist=rcm)

    Smallest degree node as heuristic function:

    >>> def smallest_degree(G):
    ...     return min(G, key=G.degree)
    >>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree))


    See Also
    --------
    reverse_cuthill_mckee_ordering

    Notes
    -----
    The optimal solution the bandwidth reduction is NP-complete [2]_.


    References
    ----------
    .. [1] E. Cuthill and J. McKee.
       Reducing the bandwidth of sparse symmetric matrices,
       In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969.
       http://doi.acm.org/10.1145/800195.805928
    .. [2]  Steven S. Skiena. 1997. The Algorithm Design Manual.
       Springer-Verlag New York, Inc., New York, NY, USA.
    """
    for c in nx.connected_components(G):
        yield from connected_cuthill_mckee_ordering(G.subgraph(c), heuristic)


def reverse_cuthill_mckee_ordering(G, heuristic=None):
    """Generate an ordering (permutation) of the graph nodes to make
    a sparse matrix.

    Uses the reverse Cuthill-McKee heuristic (based on breadth-first search)
    [1]_.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    heuristic : function, optional
      Function to choose starting node for RCM algorithm.  If None
      a node from a pseudo-peripheral pair is used.  A user-defined function
      can be supplied that takes a graph object and returns a single node.

    Returns
    -------
    nodes : generator
       Generator of nodes in reverse Cuthill-McKee ordering.

    Examples
    --------
    >>> from networkx.utils import reverse_cuthill_mckee_ordering
    >>> G = nx.path_graph(4)
    >>> rcm = list(reverse_cuthill_mckee_ordering(G))
    >>> A = nx.adjacency_matrix(G, nodelist=rcm)

    Smallest degree node as heuristic function:

    >>> def smallest_degree(G):
    ...     return min(G, key=G.degree)
    >>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))


    See Also
    --------
    cuthill_mckee_ordering

    Notes
    -----
    The optimal solution the bandwidth reduction is NP-complete [2]_.

    References
    ----------
    .. [1] E. Cuthill and J. McKee.
       Reducing the bandwidth of sparse symmetric matrices,
       In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969.
       http://doi.acm.org/10.1145/800195.805928
    .. [2]  Steven S. Skiena. 1997. The Algorithm Design Manual.
       Springer-Verlag New York, Inc., New York, NY, USA.
    """
    return reversed(list(cuthill_mckee_ordering(G, heuristic=heuristic)))


def connected_cuthill_mckee_ordering(G, heuristic=None):
    # the cuthill mckee algorithm for connected graphs
    if heuristic is None:
        start = pseudo_peripheral_node(G)
    else:
        start = heuristic(G)
    visited = {start}
    queue = deque([start])
    while queue:
        parent = queue.popleft()
        yield parent
        nd = sorted(G.degree(set(G[parent]) - visited), key=itemgetter(1))
        children = [n for n, d in nd]
        visited.update(children)
        queue.extend(children)


def pseudo_peripheral_node(G):
    # helper for cuthill-mckee to find a node in a "pseudo peripheral pair"
    # to use as good starting node
    u = arbitrary_element(G)
    lp = 0
    v = u
    while True:
        spl = dict(nx.shortest_path_length(G, v))
        l = max(spl.values())
        if l <= lp:
            break
        lp = l
        farthest = (n for n, dist in spl.items() if dist == l)
        v, deg = min(G.degree(farthest), key=itemgetter(1))
    return v