File size: 10,461 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
Check that the output from irrational functions is accurate for
high-precision input, from 5 to 200 digits. The reference values were
verified with Mathematica.
"""

import time
from mpmath import *

precs = [5, 15, 28, 35, 57, 80, 100, 150, 200]

# sqrt(3) + pi/2
a = \
"3.302847134363773912758768033145623809041389953497933538543279275605"\
"841220051904536395163599428307109666700184672047856353516867399774243594"\
"67433521615861420725323528325327484262075464241255915238845599752675"

# e + 1/euler**2
b = \
"5.719681166601007617111261398629939965860873957353320734275716220045750"\
"31474116300529519620938123730851145473473708966080207482581266469342214"\
"824842256999042984813905047895479210702109260221361437411947323431"

# sqrt(a)
sqrt_a = \
"1.817373691447021556327498239690365674922395036495564333152483422755"\
"144321726165582817927383239308173567921345318453306994746434073691275094"\
"484777905906961689902608644112196725896908619756404253109722911487"

# sqrt(a+b*i).real
sqrt_abi_real = \
"2.225720098415113027729407777066107959851146508557282707197601407276"\
"89160998185797504198062911768240808839104987021515555650875977724230130"\
"3584116233925658621288393930286871862273400475179312570274423840384"

# sqrt(a+b*i).imag
sqrt_abi_imag = \
"1.2849057639084690902371581529110949983261182430040898147672052833653668"\
"0629534491275114877090834296831373498336559849050755848611854282001250"\
"1924311019152914021365263161630765255610885489295778894976075186"

# log(a)
log_a = \
"1.194784864491089550288313512105715261520511949410072046160598707069"\
"4336653155025770546309137440687056366757650909754708302115204338077595203"\
"83005773986664564927027147084436553262269459110211221152925732612"

# log(a+b*i).real
log_abi_real = \
"1.8877985921697018111624077550443297276844736840853590212962006811663"\
"04949387789489704203167470111267581371396245317618589339274243008242708"\
"014251531496104028712866224020066439049377679709216784954509456421"

# log(a+b*i).imag
log_abi_imag = \
"1.0471204952840802663567714297078763189256357109769672185219334169734948"\
"4265809854092437285294686651806426649541504240470168212723133326542181"\
"8300136462287639956713914482701017346851009323172531601894918640"

# exp(a)
exp_a = \
"27.18994224087168661137253262213293847994194869430518354305430976149"\
"382792035050358791398632888885200049857986258414049540376323785711941636"\
"100358982497583832083513086941635049329804685212200507288797531143"

# exp(a+b*i).real
exp_abi_real = \
"22.98606617170543596386921087657586890620262522816912505151109385026"\
"40160179326569526152851983847133513990281518417211964710397233157168852"\
"4963130831190142571659948419307628119985383887599493378056639916701"

# exp(a+b*i).imag
exp_abi_imag = \
"-14.523557450291489727214750571590272774669907424478129280902375851196283"\
"3377162379031724734050088565710975758824441845278120105728824497308303"\
"6065619788140201636218705414429933685889542661364184694108251449"

# a**b
pow_a_b = \
"928.7025342285568142947391505837660251004990092821305668257284426997"\
"361966028275685583421197860603126498884545336686124793155581311527995550"\
"580229264427202446131740932666832138634013168125809402143796691154"

# (a**(a+b*i)).real
pow_a_abi_real = \
"44.09156071394489511956058111704382592976814280267142206420038656267"\
"67707916510652790502399193109819563864568986234654864462095231138500505"\
"8197456514795059492120303477512711977915544927440682508821426093455"

# (a**(a+b*i)).imag
pow_a_abi_imag = \
"27.069371511573224750478105146737852141664955461266218367212527612279886"\
"9322304536553254659049205414427707675802193810711302947536332040474573"\
"8166261217563960235014674118610092944307893857862518964990092301"

# ((a+b*i)**(a+b*i)).real
pow_abi_abi_real = \
"-0.15171310677859590091001057734676423076527145052787388589334350524"\
"8084195882019497779202452975350579073716811284169068082670778986235179"\
"0813026562962084477640470612184016755250592698408112493759742219150452"\

# ((a+b*i)**(a+b*i)).imag
pow_abi_abi_imag = \
"1.2697592504953448936553147870155987153192995316950583150964099070426"\
"4736837932577176947632535475040521749162383347758827307504526525647759"\
"97547638617201824468382194146854367480471892602963428122896045019902"

# sin(a)
sin_a = \
"-0.16055653857469062740274792907968048154164433772938156243509084009"\
"38437090841460493108570147191289893388608611542655654723437248152535114"\
"528368009465836614227575701220612124204622383149391870684288862269631"

# sin(1000*a)
sin_1000a = \
"-0.85897040577443833776358106803777589664322997794126153477060795801"\
"09151695416961724733492511852267067419573754315098042850381158563024337"\
"216458577140500488715469780315833217177634490142748614625281171216863"

# sin(a+b*i)
sin_abi_real = \
"-24.4696999681556977743346798696005278716053366404081910969773939630"\
"7149215135459794473448465734589287491880563183624997435193637389884206"\
"02151395451271809790360963144464736839412254746645151672423256977064"

sin_abi_imag = \
"-150.42505378241784671801405965872972765595073690984080160750785565810981"\
"8314482499135443827055399655645954830931316357243750839088113122816583"\
"7169201254329464271121058839499197583056427233866320456505060735"

# cos
cos_a = \
"-0.98702664499035378399332439243967038895709261414476495730788864004"\
"05406821549361039745258003422386169330787395654908532996287293003581554"\
"257037193284199198069707141161341820684198547572456183525659969145501"

cos_1000a = \
"-0.51202523570982001856195696460663971099692261342827540426136215533"\
"52686662667660613179619804463250686852463876088694806607652218586060613"\
"951310588158830695735537073667299449753951774916401887657320950496820"

# tan
tan_a = \
"0.162666873675188117341401059858835168007137819495998960250142156848"\
"639654718809412181543343168174807985559916643549174530459883826451064966"\
"7996119428949951351938178809444268785629011625179962457123195557310"

tan_abi_real = \
"6.822696615947538488826586186310162599974827139564433912601918442911"\
"1026830824380070400102213741875804368044342309515353631134074491271890"\
"467615882710035471686578162073677173148647065131872116479947620E-6"

tan_abi_imag = \
"0.9999795833048243692245661011298447587046967777739649018690797625964167"\
"1446419978852235960862841608081413169601038230073129482874832053357571"\
"62702259309150715669026865777947502665936317953101462202542168429"


def test_hp():
    for dps in precs:
        mp.dps = dps + 8
        aa = mpf(a)
        bb = mpf(b)
        a1000 = 1000*mpf(a)
        abi = mpc(aa, bb)
        mp.dps = dps
        assert (sqrt(3) + pi/2).ae(aa)
        assert (e + 1/euler**2).ae(bb)

        assert sqrt(aa).ae(mpf(sqrt_a))
        assert sqrt(abi).ae(mpc(sqrt_abi_real, sqrt_abi_imag))

        assert log(aa).ae(mpf(log_a))
        assert log(abi).ae(mpc(log_abi_real, log_abi_imag))

        assert exp(aa).ae(mpf(exp_a))
        assert exp(abi).ae(mpc(exp_abi_real, exp_abi_imag))

        assert (aa**bb).ae(mpf(pow_a_b))
        assert (aa**abi).ae(mpc(pow_a_abi_real, pow_a_abi_imag))
        assert (abi**abi).ae(mpc(pow_abi_abi_real, pow_abi_abi_imag))

        assert sin(a).ae(mpf(sin_a))
        assert sin(a1000).ae(mpf(sin_1000a))
        assert sin(abi).ae(mpc(sin_abi_real, sin_abi_imag))

        assert cos(a).ae(mpf(cos_a))
        assert cos(a1000).ae(mpf(cos_1000a))

        assert tan(a).ae(mpf(tan_a))
        assert tan(abi).ae(mpc(tan_abi_real, tan_abi_imag))

        # check that complex cancellation is avoided so that both
        # real and imaginary parts have high relative accuracy.
        # abs_eps should be 0, but has to be set to 1e-205 to pass the
        # 200-digit case, probably due to slight inaccuracy in the
        # precomputed input
        assert (tan(abi).real).ae(mpf(tan_abi_real), abs_eps=1e-205)
        assert (tan(abi).imag).ae(mpf(tan_abi_imag), abs_eps=1e-205)
    mp.dps = 460
    assert str(log(3))[-20:] == '02166121184001409826'
    mp.dps = 15

# Since str(a) can differ in the last digit from rounded a, and I want
# to compare the last digits of big numbers with the results in Mathematica,
# I made this hack to get the last 20 digits of rounded a

def last_digits(a):
    r = repr(a)
    s = str(a)
    #dps = mp.dps
    #mp.dps += 3
    m = 10
    r = r.replace(s[:-m],'')
    r = r.replace("mpf('",'').replace("')",'')
    num0 = 0
    for c in r:
        if c == '0':
            num0 += 1
        else:
            break
    b = float(int(r))/10**(len(r) - m)
    if b >= 10**m - 0.5:  # pragma: no cover
        raise NotImplementedError
    n = int(round(b))
    sn = str(n)
    s = s[:-m] + '0'*num0 + sn
    return s[-20:]

# values checked with Mathematica
def test_log_hp():
    mp.dps = 2000
    a = mpf(10)**15000/3
    r = log(a)
    res = last_digits(r)
    # Mathematica N[Log[10^15000/3], 2000]
    # ...7443804441768333470331
    assert res == '43804441768333470331'

    # see issue 145
    r = log(mpf(3)/2)
    # Mathematica N[Log[3/2], 2000]
    # ...69653749808140753263288
    res = last_digits(r)
    assert res == '53749808140753263288'

    mp.dps = 10000
    r = log(2)
    res = last_digits(r)
    # Mathematica  N[Log[2], 10000]
    # ...695615913401856601359655561
    assert res == '13401856601359655561'
    r = log(mpf(10)**10/3)
    res = last_digits(r)
    # Mathematica N[Log[10^10/3], 10000]
    # ...587087654020631943060007154
    assert res == '54020631943060007154', res
    r = log(mpf(10)**100/3)
    res = last_digits(r)
    # Mathematica N[Log[10^100/3], 10000]
    # ,,,59246336539088351652334666
    assert res == '36539088351652334666', res
    mp.dps += 10
    a = 1 - mpf(1)/10**10
    mp.dps -= 10
    r = log(a)
    res = last_digits(r)
    # ...3310334360482956137216724048322957404
    # 372167240483229574038733026370
    # Mathematica N[Log[1 - 10^-10]*10^10, 10000]
    # ...60482956137216724048322957404
    assert res == '37216724048322957404', res
    mp.dps = 10000
    mp.dps += 100
    a = 1 + mpf(1)/10**100
    mp.dps -= 100

    r = log(a)
    res = last_digits(+r)
    # Mathematica N[Log[1 + 10^-100]*10^10, 10030]
    # ...3994733877377412241546890854692521568292338268273 10^-91
    assert res == '39947338773774122415', res

    mp.dps = 15

def test_exp_hp():
    mp.dps = 4000
    r = exp(mpf(1)/10)
    # IntegerPart[N[Exp[1/10] * 10^4000, 4000]]
    # ...92167105162069688129
    assert int(r * 10**mp.dps) % 10**20 == 92167105162069688129