File size: 9,934 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import pytest

np = pytest.importorskip("numpy")
pytest.importorskip("scipy")

import networkx as nx
from networkx.generators.degree_seq import havel_hakimi_graph
from networkx.generators.expanders import margulis_gabber_galil_graph


class TestLaplacian:
    @classmethod
    def setup_class(cls):
        deg = [3, 2, 2, 1, 0]
        cls.G = havel_hakimi_graph(deg)
        cls.WG = nx.Graph(
            (u, v, {"weight": 0.5, "other": 0.3}) for (u, v) in cls.G.edges()
        )
        cls.WG.add_node(4)
        cls.MG = nx.MultiGraph(cls.G)

        # Graph with clsloops
        cls.Gsl = cls.G.copy()
        for node in cls.Gsl.nodes():
            cls.Gsl.add_edge(node, node)

    def test_laplacian(self):
        "Graph Laplacian"
        # fmt: off
        NL = np.array([[ 3, -1, -1, -1,  0],
                       [-1,  2, -1,  0,  0],
                       [-1, -1,  2,  0,  0],
                       [-1,  0,  0,  1,  0],
                       [ 0,  0,  0,  0,  0]])
        # fmt: on
        WL = 0.5 * NL
        OL = 0.3 * NL
        np.testing.assert_equal(nx.laplacian_matrix(self.G).todense(), NL)
        np.testing.assert_equal(nx.laplacian_matrix(self.MG).todense(), NL)
        np.testing.assert_equal(
            nx.laplacian_matrix(self.G, nodelist=[0, 1]).todense(),
            np.array([[1, -1], [-1, 1]]),
        )
        np.testing.assert_equal(nx.laplacian_matrix(self.WG).todense(), WL)
        np.testing.assert_equal(nx.laplacian_matrix(self.WG, weight=None).todense(), NL)
        np.testing.assert_equal(
            nx.laplacian_matrix(self.WG, weight="other").todense(), OL
        )

    def test_normalized_laplacian(self):
        "Generalized Graph Laplacian"
        # fmt: off
        G = np.array([[ 1.   , -0.408, -0.408, -0.577,  0.],
                      [-0.408,  1.   , -0.5  ,  0.   ,  0.],
                      [-0.408, -0.5  ,  1.   ,  0.   ,  0.],
                      [-0.577,  0.   ,  0.   ,  1.   ,  0.],
                      [ 0.   ,  0.   ,  0.   ,  0.   ,  0.]])
        GL = np.array([[ 1.   , -0.408, -0.408, -0.577,  0.   ],
                       [-0.408,  1.   , -0.5  ,  0.   ,  0.   ],
                       [-0.408, -0.5  ,  1.   ,  0.   ,  0.   ],
                       [-0.577,  0.   ,  0.   ,  1.   ,  0.   ],
                       [ 0.   ,  0.   ,  0.   ,  0.   ,  0.   ]])
        Lsl = np.array([[ 0.75  , -0.2887, -0.2887, -0.3536,  0.    ],
                        [-0.2887,  0.6667, -0.3333,  0.    ,  0.    ],
                        [-0.2887, -0.3333,  0.6667,  0.    ,  0.    ],
                        [-0.3536,  0.    ,  0.    ,  0.5   ,  0.    ],
                        [ 0.    ,  0.    ,  0.    ,  0.    ,  0.    ]])
        # fmt: on

        np.testing.assert_almost_equal(
            nx.normalized_laplacian_matrix(self.G, nodelist=range(5)).todense(),
            G,
            decimal=3,
        )
        np.testing.assert_almost_equal(
            nx.normalized_laplacian_matrix(self.G).todense(), GL, decimal=3
        )
        np.testing.assert_almost_equal(
            nx.normalized_laplacian_matrix(self.MG).todense(), GL, decimal=3
        )
        np.testing.assert_almost_equal(
            nx.normalized_laplacian_matrix(self.WG).todense(), GL, decimal=3
        )
        np.testing.assert_almost_equal(
            nx.normalized_laplacian_matrix(self.WG, weight="other").todense(),
            GL,
            decimal=3,
        )
        np.testing.assert_almost_equal(
            nx.normalized_laplacian_matrix(self.Gsl).todense(), Lsl, decimal=3
        )


def test_directed_laplacian():
    "Directed Laplacian"
    # Graph used as an example in Sec. 4.1 of Langville and Meyer,
    # "Google's PageRank and Beyond". The graph contains dangling nodes, so
    # the pagerank random walk is selected by directed_laplacian
    G = nx.DiGraph()
    G.add_edges_from(
        (
            (1, 2),
            (1, 3),
            (3, 1),
            (3, 2),
            (3, 5),
            (4, 5),
            (4, 6),
            (5, 4),
            (5, 6),
            (6, 4),
        )
    )
    # fmt: off
    GL = np.array([[ 0.9833, -0.2941, -0.3882, -0.0291, -0.0231, -0.0261],
                   [-0.2941,  0.8333, -0.2339, -0.0536, -0.0589, -0.0554],
                   [-0.3882, -0.2339,  0.9833, -0.0278, -0.0896, -0.0251],
                   [-0.0291, -0.0536, -0.0278,  0.9833, -0.4878, -0.6675],
                   [-0.0231, -0.0589, -0.0896, -0.4878,  0.9833, -0.2078],
                   [-0.0261, -0.0554, -0.0251, -0.6675, -0.2078,  0.9833]])
    # fmt: on
    L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
    np.testing.assert_almost_equal(L, GL, decimal=3)

    # Make the graph strongly connected, so we can use a random and lazy walk
    G.add_edges_from(((2, 5), (6, 1)))
    # fmt: off
    GL = np.array([[ 1.    , -0.3062, -0.4714,  0.    ,  0.    , -0.3227],
                   [-0.3062,  1.    , -0.1443,  0.    , -0.3162,  0.    ],
                   [-0.4714, -0.1443,  1.    ,  0.    , -0.0913,  0.    ],
                   [ 0.    ,  0.    ,  0.    ,  1.    , -0.5   , -0.5   ],
                   [ 0.    , -0.3162, -0.0913, -0.5   ,  1.    , -0.25  ],
                   [-0.3227,  0.    ,  0.    , -0.5   , -0.25  ,  1.    ]])
    # fmt: on
    L = nx.directed_laplacian_matrix(
        G, alpha=0.9, nodelist=sorted(G), walk_type="random"
    )
    np.testing.assert_almost_equal(L, GL, decimal=3)

    # fmt: off
    GL = np.array([[ 0.5   , -0.1531, -0.2357,  0.    ,  0.    , -0.1614],
                   [-0.1531,  0.5   , -0.0722,  0.    , -0.1581,  0.    ],
                   [-0.2357, -0.0722,  0.5   ,  0.    , -0.0456,  0.    ],
                   [ 0.    ,  0.    ,  0.    ,  0.5   , -0.25  , -0.25  ],
                   [ 0.    , -0.1581, -0.0456, -0.25  ,  0.5   , -0.125 ],
                   [-0.1614,  0.    ,  0.    , -0.25  , -0.125 ,  0.5   ]])  
    # fmt: on
    L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G), walk_type="lazy")
    np.testing.assert_almost_equal(L, GL, decimal=3)

    # Make a strongly connected periodic graph
    G = nx.DiGraph()
    G.add_edges_from(((1, 2), (2, 4), (4, 1), (1, 3), (3, 4)))
    # fmt: off
    GL = np.array([[ 0.5  , -0.176, -0.176, -0.25 ],
                   [-0.176,  0.5  ,  0.   , -0.176],
                   [-0.176,  0.   ,  0.5  , -0.176],
                   [-0.25 , -0.176, -0.176,  0.5  ]])
    # fmt: on
    L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
    np.testing.assert_almost_equal(L, GL, decimal=3)


def test_directed_combinatorial_laplacian():
    "Directed combinatorial Laplacian"
    # Graph used as an example in Sec. 4.1 of Langville and Meyer,
    # "Google's PageRank and Beyond". The graph contains dangling nodes, so
    # the pagerank random walk is selected by directed_laplacian
    G = nx.DiGraph()
    G.add_edges_from(
        (
            (1, 2),
            (1, 3),
            (3, 1),
            (3, 2),
            (3, 5),
            (4, 5),
            (4, 6),
            (5, 4),
            (5, 6),
            (6, 4),
        )
    )
    # fmt: off
    GL = np.array([[ 0.0366, -0.0132, -0.0153, -0.0034, -0.0020, -0.0027],
                   [-0.0132,  0.0450, -0.0111, -0.0076, -0.0062, -0.0069],
                   [-0.0153, -0.0111,  0.0408, -0.0035, -0.0083, -0.0027],
                   [-0.0034, -0.0076, -0.0035,  0.3688, -0.1356, -0.2187],
                   [-0.0020, -0.0062, -0.0083, -0.1356,  0.2026, -0.0505],
                   [-0.0027, -0.0069, -0.0027, -0.2187, -0.0505,  0.2815]])
    # fmt: on

    L = nx.directed_combinatorial_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
    np.testing.assert_almost_equal(L, GL, decimal=3)

    # Make the graph strongly connected, so we can use a random and lazy walk
    G.add_edges_from(((2, 5), (6, 1)))

    # fmt: off
    GL = np.array([[ 0.1395, -0.0349, -0.0465,  0.    ,  0.    , -0.0581],
                   [-0.0349,  0.093 , -0.0116,  0.    , -0.0465,  0.    ],
                   [-0.0465, -0.0116,  0.0698,  0.    , -0.0116,  0.    ],
                   [ 0.    ,  0.    ,  0.    ,  0.2326, -0.1163, -0.1163],
                   [ 0.    , -0.0465, -0.0116, -0.1163,  0.2326, -0.0581],
                   [-0.0581,  0.    ,  0.    , -0.1163, -0.0581,  0.2326]])
    # fmt: on

    L = nx.directed_combinatorial_laplacian_matrix(
        G, alpha=0.9, nodelist=sorted(G), walk_type="random"
    )
    np.testing.assert_almost_equal(L, GL, decimal=3)

    # fmt: off
    GL = np.array([[ 0.0698, -0.0174, -0.0233,  0.    ,  0.    , -0.0291],
                   [-0.0174,  0.0465, -0.0058,  0.    , -0.0233,  0.    ],
                   [-0.0233, -0.0058,  0.0349,  0.    , -0.0058,  0.    ],
                   [ 0.    ,  0.    ,  0.    ,  0.1163, -0.0581, -0.0581],
                   [ 0.    , -0.0233, -0.0058, -0.0581,  0.1163, -0.0291],
                   [-0.0291,  0.    ,  0.    , -0.0581, -0.0291,  0.1163]])
    # fmt: on

    L = nx.directed_combinatorial_laplacian_matrix(
        G, alpha=0.9, nodelist=sorted(G), walk_type="lazy"
    )
    np.testing.assert_almost_equal(L, GL, decimal=3)

    E = nx.DiGraph(margulis_gabber_galil_graph(2))
    L = nx.directed_combinatorial_laplacian_matrix(E)
    # fmt: off
    expected = np.array(
        [[ 0.16666667, -0.08333333, -0.08333333,  0.        ],
         [-0.08333333,  0.16666667,  0.        , -0.08333333],
         [-0.08333333,  0.        ,  0.16666667, -0.08333333],
         [ 0.        , -0.08333333, -0.08333333,  0.16666667]]
    )
    # fmt: on
    np.testing.assert_almost_equal(L, expected, decimal=6)

    with pytest.raises(nx.NetworkXError):
        nx.directed_combinatorial_laplacian_matrix(G, walk_type="pagerank", alpha=100)
    with pytest.raises(nx.NetworkXError):
        nx.directed_combinatorial_laplacian_matrix(G, walk_type="silly")