Spaces:
Running
Running
File size: 20,972 Bytes
e11e4fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
# # Unity ML-Agents Toolkit
# ## ML-Agent Learning (Ghost Trainer)
from collections import defaultdict
from typing import Deque, Dict, DefaultDict, List
import numpy as np
from mlagents_envs.logging_util import get_logger
from mlagents_envs.base_env import BehaviorSpec
from mlagents.trainers.policy import Policy
from mlagents.trainers.trainer import Trainer
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.agent_processor import AgentManagerQueue
from mlagents.trainers.stats import StatsPropertyType
from mlagents.trainers.behavior_id_utils import (
BehaviorIdentifiers,
create_name_behavior_id,
)
from mlagents.trainers.training_status import GlobalTrainingStatus, StatusType
logger = get_logger(__name__)
class GhostTrainer(Trainer):
"""
The GhostTrainer trains agents in adversarial games (there are teams in opposition) using a self-play mechanism.
In adversarial settings with self-play, at any time, there is only a single learning team. The other team(s) is
"ghosted" which means that its agents are executing fixed policies and not learning. The GhostTrainer wraps
a standard RL trainer which trains the learning team and ensures that only the trajectories collected
by the learning team are used for training. The GhostTrainer also maintains past policy snapshots to be used
as the fixed policies when the team is not learning. The GhostTrainer is 1:1 with brain_names as the other
trainers, and is responsible for one or more teams. Note, a GhostTrainer can have only one team in
asymmetric games where there is only one team with a particular behavior i.e. Hide and Seek.
The GhostController manages high level coordination between multiple ghost trainers. The learning team id
is cycled throughout a training run.
"""
def __init__(
self,
trainer,
brain_name,
controller,
reward_buff_cap,
trainer_settings,
training,
artifact_path,
):
"""
Creates a GhostTrainer.
:param trainer: The trainer of the policy/policies being trained with self_play
:param brain_name: The name of the brain associated with trainer config
:param controller: GhostController that coordinates all ghost trainers and calculates ELO
:param reward_buff_cap: Max reward history to track in the reward buffer
:param trainer_settings: The parameters for the trainer.
:param training: Whether the trainer is set for training.
:param artifact_path: Path to store artifacts from this trainer.
"""
super().__init__(
brain_name, trainer_settings, training, artifact_path, reward_buff_cap
)
self.trainer = trainer
self.controller = controller
self._internal_trajectory_queues: Dict[str, AgentManagerQueue[Trajectory]] = {}
self._internal_policy_queues: Dict[str, AgentManagerQueue[Policy]] = {}
self._team_to_name_to_policy_queue: DefaultDict[
int, Dict[str, AgentManagerQueue[Policy]]
] = defaultdict(dict)
self._name_to_parsed_behavior_id: Dict[str, BehaviorIdentifiers] = {}
# assign ghost's stats collection to wrapped trainer's
self._stats_reporter = self.trainer.stats_reporter
# Set the logging to print ELO in the console
self._stats_reporter.add_property(StatsPropertyType.SELF_PLAY, True)
self_play_parameters = trainer_settings.self_play
self.window = self_play_parameters.window
self.play_against_latest_model_ratio = (
self_play_parameters.play_against_latest_model_ratio
)
if (
self.play_against_latest_model_ratio > 1.0
or self.play_against_latest_model_ratio < 0.0
):
logger.warning(
"The play_against_latest_model_ratio is not between 0 and 1."
)
self.steps_between_save = self_play_parameters.save_steps
self.steps_between_swap = self_play_parameters.swap_steps
self.steps_to_train_team = self_play_parameters.team_change
if self.steps_to_train_team > self.get_max_steps:
logger.warning(
"The max steps of the GhostTrainer for behavior name {} is less than team change. This team will not face \
opposition that has been trained if the opposition is managed by a different GhostTrainer as in an \
asymmetric game.".format(
self.brain_name
)
)
# Counts the number of steps of the ghost policies. Snapshot swapping
# depends on this counter whereas snapshot saving and team switching depends
# on the wrapped. This ensures that all teams train for the same number of trainer
# steps.
self.ghost_step: int = 0
# A list of dicts from brain name to a single snapshot for this trainer's policies
self.policy_snapshots: List[Dict[str, List[float]]] = []
# A dict from brain name to the current snapshot of this trainer's policies
self.current_policy_snapshot: Dict[str, List[float]] = {}
self.snapshot_counter: int = 0
# wrapped_training_team and learning team need to be separate
# in the situation where new agents are created destroyed
# after learning team switches. These agents need to be added
# to trainers properly.
self._learning_team: int = None
self.wrapped_trainer_team: int = None
self.last_save: int = 0
self.last_swap: int = 0
self.last_team_change: int = 0
self.initial_elo = GlobalTrainingStatus.get_parameter_state(
self.brain_name, StatusType.ELO
)
if self.initial_elo is None:
self.initial_elo = self_play_parameters.initial_elo
self.policy_elos: List[float] = [self.initial_elo] * (
self.window + 1
) # for learning policy
self.current_opponent: int = 0
@property
def get_step(self) -> int:
"""
Returns the number of steps the wrapped trainer has performed
:return: the step count of the wrapped trainer
"""
return self.trainer.get_step
@property
def reward_buffer(self) -> Deque[float]:
"""
Returns the reward buffer. The reward buffer contains the cumulative
rewards of the most recent episodes completed by agents using this
trainer.
:return: the reward buffer.
"""
return self.trainer.reward_buffer
@property
def current_elo(self) -> float:
"""
Gets ELO of current policy which is always last in the list
:return: ELO of current policy
"""
return self.policy_elos[-1]
def change_current_elo(self, change: float) -> None:
"""
Changes elo of current policy which is always last in the list
:param change: Amount to change current elo by
"""
self.policy_elos[-1] += change
def get_opponent_elo(self) -> float:
"""
Get elo of current opponent policy
:return: ELO of current opponent policy
"""
return self.policy_elos[self.current_opponent]
def change_opponent_elo(self, change: float) -> None:
"""
Changes elo of current opponent policy
:param change: Amount to change current opponent elo by
"""
self.policy_elos[self.current_opponent] -= change
def _process_trajectory(self, trajectory: Trajectory) -> None:
"""
Determines the final result of an episode and asks the GhostController
to calculate the ELO change. The GhostController changes the ELO
of the opponent policy since this may be in a different GhostTrainer
i.e. in asymmetric games. We assume the last reward determines the winner.
:param trajectory: Trajectory.
"""
if (
trajectory.done_reached
and trajectory.all_group_dones_reached
and not trajectory.interrupted
):
# Assumption is that final reward is >0/0/<0 for win/draw/loss
final_reward = (
trajectory.steps[-1].reward + trajectory.steps[-1].group_reward
)
result = 0.5
if final_reward > 0:
result = 1.0
elif final_reward < 0:
result = 0.0
change = self.controller.compute_elo_rating_changes(
self.current_elo, result
)
self.change_current_elo(change)
self._stats_reporter.add_stat("Self-play/ELO", self.current_elo)
def advance(self) -> None:
"""
Steps the trainer, passing trajectories to wrapped trainer and calling trainer advance
"""
for trajectory_queue in self.trajectory_queues:
parsed_behavior_id = self._name_to_parsed_behavior_id[
trajectory_queue.behavior_id
]
if parsed_behavior_id.team_id == self._learning_team:
# With a future multiagent trainer, this will be indexed by 'role'
internal_trajectory_queue = self._internal_trajectory_queues[
parsed_behavior_id.brain_name
]
try:
# We grab at most the maximum length of the queue.
# This ensures that even if the queue is being filled faster than it is
# being emptied, the trajectories in the queue are on-policy.
for _ in range(trajectory_queue.qsize()):
t = trajectory_queue.get_nowait()
# adds to wrapped trainers queue
internal_trajectory_queue.put(t)
self._process_trajectory(t)
except AgentManagerQueue.Empty:
pass
else:
# Dump trajectories from non-learning policy
try:
for _ in range(trajectory_queue.qsize()):
t = trajectory_queue.get_nowait()
# count ghost steps
self.ghost_step += len(t.steps)
except AgentManagerQueue.Empty:
pass
self._next_summary_step = self.trainer._next_summary_step
self.trainer.advance()
if self.get_step - self.last_team_change > self.steps_to_train_team:
self.controller.change_training_team(self.get_step)
self.last_team_change = self.get_step
next_learning_team = self.controller.get_learning_team
# Case 1: No team change. The if statement just continues to push the policy
# into the correct queue (or not if not learning team).
for brain_name in self._internal_policy_queues:
internal_policy_queue = self._internal_policy_queues[brain_name]
try:
policy = internal_policy_queue.get_nowait()
self.current_policy_snapshot[brain_name] = policy.get_weights()
except AgentManagerQueue.Empty:
continue
if (
self._learning_team == next_learning_team
and next_learning_team in self._team_to_name_to_policy_queue
):
name_to_policy_queue = self._team_to_name_to_policy_queue[
next_learning_team
]
if brain_name in name_to_policy_queue:
behavior_id = create_name_behavior_id(
brain_name, next_learning_team
)
policy = self.get_policy(behavior_id)
policy.load_weights(self.current_policy_snapshot[brain_name])
name_to_policy_queue[brain_name].put(policy)
# CASE 2: Current learning team is managed by this GhostTrainer.
# If the learning team changes, the following loop over queues will push the
# new policy into the policy queue for the new learning agent if
# that policy is managed by this GhostTrainer. Otherwise, it will save the current snapshot.
# CASE 3: Current learning team is managed by a different GhostTrainer.
# If the learning team changes to a team managed by this GhostTrainer, this loop
# will push the current_snapshot into the correct queue. Otherwise,
# it will continue skipping and swap_snapshot will continue to handle
# pushing fixed snapshots
if (
self._learning_team != next_learning_team
and next_learning_team in self._team_to_name_to_policy_queue
):
name_to_policy_queue = self._team_to_name_to_policy_queue[
next_learning_team
]
for brain_name in name_to_policy_queue:
behavior_id = create_name_behavior_id(brain_name, next_learning_team)
policy = self.get_policy(behavior_id)
policy.load_weights(self.current_policy_snapshot[brain_name])
name_to_policy_queue[brain_name].put(policy)
# Note save and swap should be on different step counters.
# We don't want to save unless the policy is learning.
if self.get_step - self.last_save > self.steps_between_save:
self._save_snapshot()
self.last_save = self.get_step
if (
self._learning_team != next_learning_team
or self.ghost_step - self.last_swap > self.steps_between_swap
):
self._learning_team = next_learning_team
self._swap_snapshots()
self.last_swap = self.ghost_step
def end_episode(self):
"""
Forwarding call to wrapped trainers end_episode
"""
self.trainer.end_episode()
def save_model(self) -> None:
"""
Forwarding call to wrapped trainers save_model.
"""
GlobalTrainingStatus.set_parameter_state(
self.brain_name, StatusType.ELO, self.current_elo
)
self.trainer.save_model()
def create_policy(
self,
parsed_behavior_id: BehaviorIdentifiers,
behavior_spec: BehaviorSpec,
) -> Policy:
"""
Creates policy with the wrapped trainer's create_policy function
The first policy encountered sets the wrapped
trainer team. This is to ensure that all agents from the same multi-agent
team are grouped. All policies associated with this team are added to the
wrapped trainer to be trained.
"""
policy = self.trainer.create_policy(parsed_behavior_id, behavior_spec)
team_id = parsed_behavior_id.team_id
self.controller.subscribe_team_id(team_id, self)
# First policy or a new agent on the same team encountered
if self.wrapped_trainer_team is None or team_id == self.wrapped_trainer_team:
internal_trainer_policy = self.trainer.create_policy(
parsed_behavior_id, behavior_spec
)
self.trainer.add_policy(parsed_behavior_id, internal_trainer_policy)
self.current_policy_snapshot[
parsed_behavior_id.brain_name
] = internal_trainer_policy.get_weights()
policy.load_weights(internal_trainer_policy.get_weights())
self._save_snapshot() # Need to save after trainer initializes policy
self._learning_team = self.controller.get_learning_team
self.wrapped_trainer_team = team_id
else:
# Load the weights of the ghost policy from the wrapped one
policy.load_weights(
self.trainer.get_policy(parsed_behavior_id).get_weights()
)
return policy
def create_optimizer(self) -> TorchOptimizer:
pass
def add_policy(
self, parsed_behavior_id: BehaviorIdentifiers, policy: Policy
) -> None:
"""
Adds policy to GhostTrainer.
:param parsed_behavior_id: Behavior ID that the policy should belong to.
:param policy: Policy to associate with name_behavior_id.
"""
name_behavior_id = parsed_behavior_id.behavior_id
self._name_to_parsed_behavior_id[name_behavior_id] = parsed_behavior_id
self.policies[name_behavior_id] = policy
def _save_snapshot(self) -> None:
"""
Saves a snapshot of the current weights of the policy and maintains the policy_snapshots
according to the window size
"""
for brain_name in self.current_policy_snapshot:
current_snapshot_for_brain_name = self.current_policy_snapshot[brain_name]
try:
self.policy_snapshots[self.snapshot_counter][
brain_name
] = current_snapshot_for_brain_name
except IndexError:
self.policy_snapshots.append(
{brain_name: current_snapshot_for_brain_name}
)
self.policy_elos[self.snapshot_counter] = self.current_elo
self.snapshot_counter = (self.snapshot_counter + 1) % self.window
def _swap_snapshots(self) -> None:
"""
Swaps the appropriate weight to the policy and pushes it to respective policy queues
"""
for team_id in self._team_to_name_to_policy_queue:
if team_id == self._learning_team:
continue
elif np.random.uniform() < (1 - self.play_against_latest_model_ratio):
x = np.random.randint(len(self.policy_snapshots))
snapshot = self.policy_snapshots[x]
else:
snapshot = self.current_policy_snapshot
x = "current"
self.current_opponent = -1 if x == "current" else x
name_to_policy_queue = self._team_to_name_to_policy_queue[team_id]
for brain_name in self._team_to_name_to_policy_queue[team_id]:
behavior_id = create_name_behavior_id(brain_name, team_id)
policy = self.get_policy(behavior_id)
policy.load_weights(snapshot[brain_name])
name_to_policy_queue[brain_name].put(policy)
logger.debug(
"Step {}: Swapping snapshot {} to id {} with team {} learning".format(
self.ghost_step, x, behavior_id, self._learning_team
)
)
def publish_policy_queue(self, policy_queue: AgentManagerQueue[Policy]) -> None:
"""
Adds a policy queue for every member of the team to the list of queues to publish to when this Trainer
makes a policy update. Creates an internal policy queue for the wrapped
trainer to push to. The GhostTrainer pushes all policies to the env.
:param queue: Policy queue to publish to.
"""
super().publish_policy_queue(policy_queue)
parsed_behavior_id = self._name_to_parsed_behavior_id[policy_queue.behavior_id]
self._team_to_name_to_policy_queue[parsed_behavior_id.team_id][
parsed_behavior_id.brain_name
] = policy_queue
if parsed_behavior_id.team_id == self.wrapped_trainer_team:
# With a future multiagent trainer, this will be indexed by 'role'
internal_policy_queue: AgentManagerQueue[Policy] = AgentManagerQueue(
parsed_behavior_id.brain_name
)
self._internal_policy_queues[
parsed_behavior_id.brain_name
] = internal_policy_queue
self.trainer.publish_policy_queue(internal_policy_queue)
def subscribe_trajectory_queue(
self, trajectory_queue: AgentManagerQueue[Trajectory]
) -> None:
"""
Adds a trajectory queue for every member of the team to the list of queues for the trainer
to ingest Trajectories from. Creates an internal trajectory queue to push trajectories from
the learning team. The wrapped trainer subscribes to this queue.
:param queue: Trajectory queue to publish to.
"""
super().subscribe_trajectory_queue(trajectory_queue)
parsed_behavior_id = self._name_to_parsed_behavior_id[
trajectory_queue.behavior_id
]
if parsed_behavior_id.team_id == self.wrapped_trainer_team:
# With a future multiagent trainer, this will be indexed by 'role'
internal_trajectory_queue: AgentManagerQueue[
Trajectory
] = AgentManagerQueue(parsed_behavior_id.brain_name)
self._internal_trajectory_queues[
parsed_behavior_id.brain_name
] = internal_trajectory_queue
self.trainer.subscribe_trajectory_queue(internal_trajectory_queue)
|