Spaces:
Running
Running
File size: 27,848 Bytes
e11e4fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
from typing import Dict, cast, List, Tuple, Optional
from collections import defaultdict
import attr
from mlagents.trainers.torch_entities.components.reward_providers.extrinsic_reward_provider import (
ExtrinsicRewardProvider,
)
import numpy as np
from mlagents.torch_utils import torch, default_device
from mlagents.trainers.buffer import (
AgentBuffer,
BufferKey,
RewardSignalUtil,
AgentBufferField,
)
from mlagents_envs.timers import timed
from mlagents_envs.base_env import ObservationSpec, ActionSpec
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.settings import (
RewardSignalSettings,
RewardSignalType,
TrainerSettings,
NetworkSettings,
OnPolicyHyperparamSettings,
ScheduleType,
)
from mlagents.trainers.torch_entities.networks import Critic, MultiAgentNetworkBody
from mlagents.trainers.torch_entities.decoders import ValueHeads
from mlagents.trainers.torch_entities.agent_action import AgentAction
from mlagents.trainers.torch_entities.action_log_probs import ActionLogProbs
from mlagents.trainers.torch_entities.utils import ModelUtils
from mlagents.trainers.trajectory import ObsUtil, GroupObsUtil
from mlagents_envs.logging_util import get_logger
logger = get_logger(__name__)
@attr.s(auto_attribs=True)
class POCASettings(OnPolicyHyperparamSettings):
beta: float = 5.0e-3
epsilon: float = 0.2
lambd: float = 0.95
num_epoch: int = 3
learning_rate_schedule: ScheduleType = ScheduleType.LINEAR
beta_schedule: ScheduleType = ScheduleType.LINEAR
epsilon_schedule: ScheduleType = ScheduleType.LINEAR
class TorchPOCAOptimizer(TorchOptimizer):
class POCAValueNetwork(torch.nn.Module, Critic):
"""
The POCAValueNetwork uses the MultiAgentNetworkBody to compute the value
and POCA baseline for a variable number of agents in a group that all
share the same observation and action space.
"""
def __init__(
self,
stream_names: List[str],
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
action_spec: ActionSpec,
):
torch.nn.Module.__init__(self)
self.network_body = MultiAgentNetworkBody(
observation_specs, network_settings, action_spec
)
if network_settings.memory is not None:
encoding_size = network_settings.memory.memory_size // 2
else:
encoding_size = network_settings.hidden_units
self.value_heads = ValueHeads(stream_names, encoding_size + 1, 1)
# The + 1 is for the normalized number of agents
@property
def memory_size(self) -> int:
return self.network_body.memory_size
def update_normalization(self, buffer: AgentBuffer) -> None:
self.network_body.update_normalization(buffer)
def baseline(
self,
obs_without_actions: List[torch.Tensor],
obs_with_actions: Tuple[List[List[torch.Tensor]], List[AgentAction]],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
"""
The POCA baseline marginalizes the action of the agent associated with self_obs.
It calls the forward pass of the MultiAgentNetworkBody with the state action
pairs of groupmates but just the state of the agent in question.
:param obs_without_actions: The obs of the agent for which to compute the baseline.
:param obs_with_actions: Tuple of observations and actions for all groupmates.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of Dict of reward stream to tensor and critic memories.
"""
(obs, actions) = obs_with_actions
encoding, memories = self.network_body(
obs_only=[obs_without_actions],
obs=obs,
actions=actions,
memories=memories,
sequence_length=sequence_length,
)
value_outputs, critic_mem_out = self.forward(
encoding, memories, sequence_length
)
return value_outputs, critic_mem_out
def critic_pass(
self,
obs: List[List[torch.Tensor]],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
"""
A centralized value function. It calls the forward pass of MultiAgentNetworkBody
with just the states of all agents.
:param obs: List of observations for all agents in group
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of Dict of reward stream to tensor and critic memories.
"""
encoding, memories = self.network_body(
obs_only=obs,
obs=[],
actions=[],
memories=memories,
sequence_length=sequence_length,
)
value_outputs, critic_mem_out = self.forward(
encoding, memories, sequence_length
)
return value_outputs, critic_mem_out
def forward(
self,
encoding: torch.Tensor,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
output = self.value_heads(encoding)
return output, memories
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
"""
Takes a Policy and a Dict of trainer parameters and creates an Optimizer around the policy.
:param policy: A TorchPolicy object that will be updated by this POCA Optimizer.
:param trainer_params: Trainer parameters dictionary that specifies the
properties of the trainer.
"""
# Create the graph here to give more granular control of the TF graph to the Optimizer.
super().__init__(policy, trainer_settings)
reward_signal_configs = trainer_settings.reward_signals
reward_signal_names = [key.value for key, _ in reward_signal_configs.items()]
self._critic = TorchPOCAOptimizer.POCAValueNetwork(
reward_signal_names,
policy.behavior_spec.observation_specs,
network_settings=trainer_settings.network_settings,
action_spec=policy.behavior_spec.action_spec,
)
# Move to GPU if needed
self._critic.to(default_device())
params = list(self.policy.actor.parameters()) + list(self.critic.parameters())
self.hyperparameters: POCASettings = cast(
POCASettings, trainer_settings.hyperparameters
)
self.decay_learning_rate = ModelUtils.DecayedValue(
self.hyperparameters.learning_rate_schedule,
self.hyperparameters.learning_rate,
1e-10,
self.trainer_settings.max_steps,
)
self.decay_epsilon = ModelUtils.DecayedValue(
self.hyperparameters.epsilon_schedule,
self.hyperparameters.epsilon,
0.1,
self.trainer_settings.max_steps,
)
self.decay_beta = ModelUtils.DecayedValue(
self.hyperparameters.beta_schedule,
self.hyperparameters.beta,
1e-5,
self.trainer_settings.max_steps,
)
self.optimizer = torch.optim.Adam(
params, lr=self.trainer_settings.hyperparameters.learning_rate
)
self.stats_name_to_update_name = {
"Losses/Value Loss": "value_loss",
"Losses/Policy Loss": "policy_loss",
}
self.stream_names = list(self.reward_signals.keys())
self.value_memory_dict: Dict[str, torch.Tensor] = {}
self.baseline_memory_dict: Dict[str, torch.Tensor] = {}
def create_reward_signals(
self, reward_signal_configs: Dict[RewardSignalType, RewardSignalSettings]
) -> None:
"""
Create reward signals. Override default to provide warnings for Curiosity and
GAIL, and make sure Extrinsic adds team rewards.
:param reward_signal_configs: Reward signal config.
"""
for reward_signal in reward_signal_configs.keys():
if reward_signal != RewardSignalType.EXTRINSIC:
logger.warning(
f"Reward signal {reward_signal.value.capitalize()} is not supported with the POCA trainer; "
"results may be unexpected."
)
super().create_reward_signals(reward_signal_configs)
# Make sure we add the groupmate rewards in POCA, so agents learn how to help each
# other achieve individual rewards as well
for reward_provider in self.reward_signals.values():
if isinstance(reward_provider, ExtrinsicRewardProvider):
reward_provider.add_groupmate_rewards = True
@property
def critic(self):
return self._critic
@timed
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
"""
Performs update on model.
:param batch: Batch of experiences.
:param num_sequences: Number of sequences to process.
:return: Results of update.
"""
# Get decayed parameters
decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
decay_eps = self.decay_epsilon.get_value(self.policy.get_current_step())
decay_bet = self.decay_beta.get_value(self.policy.get_current_step())
returns = {}
old_values = {}
old_baseline_values = {}
for name in self.reward_signals:
old_values[name] = ModelUtils.list_to_tensor(
batch[RewardSignalUtil.value_estimates_key(name)]
)
returns[name] = ModelUtils.list_to_tensor(
batch[RewardSignalUtil.returns_key(name)]
)
old_baseline_values[name] = ModelUtils.list_to_tensor(
batch[RewardSignalUtil.baseline_estimates_key(name)]
)
n_obs = len(self.policy.behavior_spec.observation_specs)
current_obs = ObsUtil.from_buffer(batch, n_obs)
# Convert to tensors
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
groupmate_obs = GroupObsUtil.from_buffer(batch, n_obs)
groupmate_obs = [
[ModelUtils.list_to_tensor(obs) for obs in _groupmate_obs]
for _groupmate_obs in groupmate_obs
]
act_masks = ModelUtils.list_to_tensor(batch[BufferKey.ACTION_MASK])
actions = AgentAction.from_buffer(batch)
groupmate_actions = AgentAction.group_from_buffer(batch)
memories = [
ModelUtils.list_to_tensor(batch[BufferKey.MEMORY][i])
for i in range(0, len(batch[BufferKey.MEMORY]), self.policy.sequence_length)
]
if len(memories) > 0:
memories = torch.stack(memories).unsqueeze(0)
value_memories = [
ModelUtils.list_to_tensor(batch[BufferKey.CRITIC_MEMORY][i])
for i in range(
0, len(batch[BufferKey.CRITIC_MEMORY]), self.policy.sequence_length
)
]
baseline_memories = [
ModelUtils.list_to_tensor(batch[BufferKey.BASELINE_MEMORY][i])
for i in range(
0, len(batch[BufferKey.BASELINE_MEMORY]), self.policy.sequence_length
)
]
if len(value_memories) > 0:
value_memories = torch.stack(value_memories).unsqueeze(0)
baseline_memories = torch.stack(baseline_memories).unsqueeze(0)
run_out = self.policy.actor.get_stats(
current_obs,
actions,
masks=act_masks,
memories=memories,
sequence_length=self.policy.sequence_length,
)
log_probs = run_out["log_probs"]
entropy = run_out["entropy"]
all_obs = [current_obs] + groupmate_obs
values, _ = self.critic.critic_pass(
all_obs,
memories=value_memories,
sequence_length=self.policy.sequence_length,
)
groupmate_obs_and_actions = (groupmate_obs, groupmate_actions)
baselines, _ = self.critic.baseline(
current_obs,
groupmate_obs_and_actions,
memories=baseline_memories,
sequence_length=self.policy.sequence_length,
)
old_log_probs = ActionLogProbs.from_buffer(batch).flatten()
log_probs = log_probs.flatten()
loss_masks = ModelUtils.list_to_tensor(batch[BufferKey.MASKS], dtype=torch.bool)
baseline_loss = ModelUtils.trust_region_value_loss(
baselines, old_baseline_values, returns, decay_eps, loss_masks
)
value_loss = ModelUtils.trust_region_value_loss(
values, old_values, returns, decay_eps, loss_masks
)
policy_loss = ModelUtils.trust_region_policy_loss(
ModelUtils.list_to_tensor(batch[BufferKey.ADVANTAGES]),
log_probs,
old_log_probs,
loss_masks,
decay_eps,
)
loss = (
policy_loss
+ 0.5 * (value_loss + 0.5 * baseline_loss)
- decay_bet * ModelUtils.masked_mean(entropy, loss_masks)
)
# Set optimizer learning rate
ModelUtils.update_learning_rate(self.optimizer, decay_lr)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
update_stats = {
# NOTE: abs() is not technically correct, but matches the behavior in TensorFlow.
# TODO: After PyTorch is default, change to something more correct.
"Losses/Policy Loss": torch.abs(policy_loss).item(),
"Losses/Value Loss": value_loss.item(),
"Losses/Baseline Loss": baseline_loss.item(),
"Policy/Learning Rate": decay_lr,
"Policy/Epsilon": decay_eps,
"Policy/Beta": decay_bet,
}
return update_stats
def get_modules(self):
modules = {"Optimizer:adam": self.optimizer, "Optimizer:critic": self._critic}
for reward_provider in self.reward_signals.values():
modules.update(reward_provider.get_modules())
return modules
def _evaluate_by_sequence_team(
self,
self_obs: List[torch.Tensor],
obs: List[List[torch.Tensor]],
actions: List[AgentAction],
init_value_mem: torch.Tensor,
init_baseline_mem: torch.Tensor,
) -> Tuple[
Dict[str, torch.Tensor],
Dict[str, torch.Tensor],
AgentBufferField,
AgentBufferField,
torch.Tensor,
torch.Tensor,
]:
"""
Evaluate a trajectory sequence-by-sequence, assembling the result. This enables us to get the
intermediate memories for the critic.
:param tensor_obs: A List of tensors of shape (trajectory_len, <obs_dim>) that are the agent's
observations for this trajectory.
:param initial_memory: The memory that preceeds this trajectory. Of shape (1,1,<mem_size>), i.e.
what is returned as the output of a MemoryModules.
:return: A Tuple of the value estimates as a Dict of [name, tensor], an AgentBufferField of the initial
memories to be used during value function update, and the final memory at the end of the trajectory.
"""
num_experiences = self_obs[0].shape[0]
all_next_value_mem = AgentBufferField()
all_next_baseline_mem = AgentBufferField()
# When using LSTM, we need to divide the trajectory into sequences of equal length. Sometimes,
# that division isn't even, and we must pad the leftover sequence.
# In the buffer, the last sequence are the ones that are padded. So if seq_len = 3 and
# trajectory is of length 10, the last sequence is [obs,pad,pad].
# Compute the number of elements in this padded seq.
leftover_seq_len = num_experiences % self.policy.sequence_length
all_values: Dict[str, List[np.ndarray]] = defaultdict(list)
all_baseline: Dict[str, List[np.ndarray]] = defaultdict(list)
_baseline_mem = init_baseline_mem
_value_mem = init_value_mem
# Evaluate other trajectories, carrying over _mem after each
# trajectory
for seq_num in range(num_experiences // self.policy.sequence_length):
for _ in range(self.policy.sequence_length):
all_next_value_mem.append(ModelUtils.to_numpy(_value_mem.squeeze()))
all_next_baseline_mem.append(
ModelUtils.to_numpy(_baseline_mem.squeeze())
)
start = seq_num * self.policy.sequence_length
end = (seq_num + 1) * self.policy.sequence_length
self_seq_obs = []
groupmate_seq_obs = []
groupmate_seq_act = []
seq_obs = []
for _self_obs in self_obs:
seq_obs.append(_self_obs[start:end])
self_seq_obs.append(seq_obs)
for groupmate_obs, groupmate_action in zip(obs, actions):
seq_obs = []
for _obs in groupmate_obs:
sliced_seq_obs = _obs[start:end]
seq_obs.append(sliced_seq_obs)
groupmate_seq_obs.append(seq_obs)
_act = groupmate_action.slice(start, end)
groupmate_seq_act.append(_act)
all_seq_obs = self_seq_obs + groupmate_seq_obs
values, _value_mem = self.critic.critic_pass(
all_seq_obs, _value_mem, sequence_length=self.policy.sequence_length
)
for signal_name, _val in values.items():
all_values[signal_name].append(_val)
groupmate_obs_and_actions = (groupmate_seq_obs, groupmate_seq_act)
baselines, _baseline_mem = self.critic.baseline(
self_seq_obs[0],
groupmate_obs_and_actions,
_baseline_mem,
sequence_length=self.policy.sequence_length,
)
for signal_name, _val in baselines.items():
all_baseline[signal_name].append(_val)
# Compute values for the potentially truncated initial sequence
if leftover_seq_len > 0:
self_seq_obs = []
groupmate_seq_obs = []
groupmate_seq_act = []
seq_obs = []
for _self_obs in self_obs:
last_seq_obs = _self_obs[-leftover_seq_len:]
seq_obs.append(last_seq_obs)
self_seq_obs.append(seq_obs)
for groupmate_obs, groupmate_action in zip(obs, actions):
seq_obs = []
for _obs in groupmate_obs:
last_seq_obs = _obs[-leftover_seq_len:]
seq_obs.append(last_seq_obs)
groupmate_seq_obs.append(seq_obs)
_act = groupmate_action.slice(len(_obs) - leftover_seq_len, len(_obs))
groupmate_seq_act.append(_act)
# For the last sequence, the initial memory should be the one at the
# beginning of this trajectory.
seq_obs = []
for _ in range(leftover_seq_len):
all_next_value_mem.append(ModelUtils.to_numpy(_value_mem.squeeze()))
all_next_baseline_mem.append(
ModelUtils.to_numpy(_baseline_mem.squeeze())
)
all_seq_obs = self_seq_obs + groupmate_seq_obs
last_values, _value_mem = self.critic.critic_pass(
all_seq_obs, _value_mem, sequence_length=leftover_seq_len
)
for signal_name, _val in last_values.items():
all_values[signal_name].append(_val)
groupmate_obs_and_actions = (groupmate_seq_obs, groupmate_seq_act)
last_baseline, _baseline_mem = self.critic.baseline(
self_seq_obs[0],
groupmate_obs_and_actions,
_baseline_mem,
sequence_length=leftover_seq_len,
)
for signal_name, _val in last_baseline.items():
all_baseline[signal_name].append(_val)
# Create one tensor per reward signal
all_value_tensors = {
signal_name: torch.cat(value_list, dim=0)
for signal_name, value_list in all_values.items()
}
all_baseline_tensors = {
signal_name: torch.cat(baseline_list, dim=0)
for signal_name, baseline_list in all_baseline.items()
}
next_value_mem = _value_mem
next_baseline_mem = _baseline_mem
return (
all_value_tensors,
all_baseline_tensors,
all_next_value_mem,
all_next_baseline_mem,
next_value_mem,
next_baseline_mem,
)
def get_trajectory_value_estimates(
self,
batch: AgentBuffer,
next_obs: List[np.ndarray],
done: bool,
agent_id: str = "",
) -> Tuple[Dict[str, np.ndarray], Dict[str, float], Optional[AgentBufferField]]:
"""
Override base class method. Unused in the trainer, but needed to make sure class heirarchy is maintained.
Assume that there are no group obs.
"""
(
value_estimates,
_,
next_value_estimates,
all_next_value_mem,
_,
) = self.get_trajectory_and_baseline_value_estimates(
batch, next_obs, [], done, agent_id
)
return value_estimates, next_value_estimates, all_next_value_mem
def get_trajectory_and_baseline_value_estimates(
self,
batch: AgentBuffer,
next_obs: List[np.ndarray],
next_groupmate_obs: List[List[np.ndarray]],
done: bool,
agent_id: str = "",
) -> Tuple[
Dict[str, np.ndarray],
Dict[str, np.ndarray],
Dict[str, float],
Optional[AgentBufferField],
Optional[AgentBufferField],
]:
"""
Get value estimates, baseline estimates, and memories for a trajectory, in batch form.
:param batch: An AgentBuffer that consists of a trajectory.
:param next_obs: the next observation (after the trajectory). Used for boostrapping
if this is not a termiinal trajectory.
:param next_groupmate_obs: the next observations from other members of the group.
:param done: Set true if this is a terminal trajectory.
:param agent_id: Agent ID of the agent that this trajectory belongs to.
:returns: A Tuple of the Value Estimates as a Dict of [name, np.ndarray(trajectory_len)],
the baseline estimates as a Dict, the final value estimate as a Dict of [name, float], and
optionally (if using memories) an AgentBufferField of initial critic and baseline memories to be used
during update.
"""
n_obs = len(self.policy.behavior_spec.observation_specs)
current_obs = ObsUtil.from_buffer(batch, n_obs)
groupmate_obs = GroupObsUtil.from_buffer(batch, n_obs)
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
groupmate_obs = [
[ModelUtils.list_to_tensor(obs) for obs in _groupmate_obs]
for _groupmate_obs in groupmate_obs
]
groupmate_actions = AgentAction.group_from_buffer(batch)
next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs]
next_obs = [obs.unsqueeze(0) for obs in next_obs]
next_groupmate_obs = [
ModelUtils.list_to_tensor_list(_list_obs)
for _list_obs in next_groupmate_obs
]
# Expand dimensions of next critic obs
next_groupmate_obs = [
[_obs.unsqueeze(0) for _obs in _list_obs]
for _list_obs in next_groupmate_obs
]
if agent_id in self.value_memory_dict:
# The agent_id should always be in both since they are added together
_init_value_mem = self.value_memory_dict[agent_id]
_init_baseline_mem = self.baseline_memory_dict[agent_id]
else:
_init_value_mem = (
torch.zeros((1, 1, self.critic.memory_size))
if self.policy.use_recurrent
else None
)
_init_baseline_mem = (
torch.zeros((1, 1, self.critic.memory_size))
if self.policy.use_recurrent
else None
)
all_obs = (
[current_obs] + groupmate_obs
if groupmate_obs is not None
else [current_obs]
)
all_next_value_mem: Optional[AgentBufferField] = None
all_next_baseline_mem: Optional[AgentBufferField] = None
with torch.no_grad():
if self.policy.use_recurrent:
(
value_estimates,
baseline_estimates,
all_next_value_mem,
all_next_baseline_mem,
next_value_mem,
next_baseline_mem,
) = self._evaluate_by_sequence_team(
current_obs,
groupmate_obs,
groupmate_actions,
_init_value_mem,
_init_baseline_mem,
)
else:
value_estimates, next_value_mem = self.critic.critic_pass(
all_obs, _init_value_mem, sequence_length=batch.num_experiences
)
groupmate_obs_and_actions = (groupmate_obs, groupmate_actions)
baseline_estimates, next_baseline_mem = self.critic.baseline(
current_obs,
groupmate_obs_and_actions,
_init_baseline_mem,
sequence_length=batch.num_experiences,
)
# Store the memory for the next trajectory
self.value_memory_dict[agent_id] = next_value_mem
self.baseline_memory_dict[agent_id] = next_baseline_mem
all_next_obs = (
[next_obs] + next_groupmate_obs
if next_groupmate_obs is not None
else [next_obs]
)
next_value_estimates, _ = self.critic.critic_pass(
all_next_obs, next_value_mem, sequence_length=1
)
for name, estimate in baseline_estimates.items():
baseline_estimates[name] = ModelUtils.to_numpy(estimate)
for name, estimate in value_estimates.items():
value_estimates[name] = ModelUtils.to_numpy(estimate)
# the base line and V shpuld not be on the same done flag
for name, estimate in next_value_estimates.items():
next_value_estimates[name] = ModelUtils.to_numpy(estimate)
if done:
for k in next_value_estimates:
if not self.reward_signals[k].ignore_done:
next_value_estimates[k][-1] = 0.0
return (
value_estimates,
baseline_estimates,
next_value_estimates,
all_next_value_mem,
all_next_baseline_mem,
)
|