Spaces:
Running
Running
File size: 26,502 Bytes
e11e4fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
import numpy as np
from typing import Dict, List, NamedTuple, cast, Tuple, Optional
import attr
from mlagents.torch_utils import torch, nn, default_device
from mlagents_envs.logging_util import get_logger
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.settings import NetworkSettings
from mlagents.trainers.torch_entities.networks import ValueNetwork, SharedActorCritic
from mlagents.trainers.torch_entities.agent_action import AgentAction
from mlagents.trainers.torch_entities.action_log_probs import ActionLogProbs
from mlagents.trainers.torch_entities.utils import ModelUtils
from mlagents.trainers.buffer import AgentBuffer, BufferKey, RewardSignalUtil
from mlagents_envs.timers import timed
from mlagents_envs.base_env import ActionSpec, ObservationSpec
from mlagents.trainers.exception import UnityTrainerException
from mlagents.trainers.settings import TrainerSettings, OffPolicyHyperparamSettings
from contextlib import ExitStack
from mlagents.trainers.trajectory import ObsUtil
EPSILON = 1e-6 # Small value to avoid divide by zero
logger = get_logger(__name__)
@attr.s(auto_attribs=True)
class SACSettings(OffPolicyHyperparamSettings):
batch_size: int = 128
buffer_size: int = 50000
buffer_init_steps: int = 0
tau: float = 0.005
steps_per_update: float = 1
save_replay_buffer: bool = False
init_entcoef: float = 1.0
reward_signal_steps_per_update: float = attr.ib()
@reward_signal_steps_per_update.default
def _reward_signal_steps_per_update_default(self):
return self.steps_per_update
class TorchSACOptimizer(TorchOptimizer):
class PolicyValueNetwork(nn.Module):
def __init__(
self,
stream_names: List[str],
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
action_spec: ActionSpec,
):
super().__init__()
num_value_outs = max(sum(action_spec.discrete_branches), 1)
num_action_ins = int(action_spec.continuous_size)
self.q1_network = ValueNetwork(
stream_names,
observation_specs,
network_settings,
num_action_ins,
num_value_outs,
)
self.q2_network = ValueNetwork(
stream_names,
observation_specs,
network_settings,
num_action_ins,
num_value_outs,
)
def forward(
self,
inputs: List[torch.Tensor],
actions: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
q1_grad: bool = True,
q2_grad: bool = True,
) -> Tuple[Dict[str, torch.Tensor], Dict[str, torch.Tensor]]:
"""
Performs a forward pass on the value network, which consists of a Q1 and Q2
network. Optionally does not evaluate gradients for either the Q1, Q2, or both.
:param inputs: List of observation tensors.
:param actions: For a continuous Q function (has actions), tensor of actions.
Otherwise, None.
:param memories: Initial memories if using memory. Otherwise, None.
:param sequence_length: Sequence length if using memory.
:param q1_grad: Whether or not to compute gradients for the Q1 network.
:param q2_grad: Whether or not to compute gradients for the Q2 network.
:return: Tuple of two dictionaries, which both map {reward_signal: Q} for Q1 and Q2,
respectively.
"""
# ExitStack allows us to enter the torch.no_grad() context conditionally
with ExitStack() as stack:
if not q1_grad:
stack.enter_context(torch.no_grad())
q1_out, _ = self.q1_network(
inputs,
actions=actions,
memories=memories,
sequence_length=sequence_length,
)
with ExitStack() as stack:
if not q2_grad:
stack.enter_context(torch.no_grad())
q2_out, _ = self.q2_network(
inputs,
actions=actions,
memories=memories,
sequence_length=sequence_length,
)
return q1_out, q2_out
class TargetEntropy(NamedTuple):
discrete: List[float] = [] # One per branch
continuous: float = 0.0
class LogEntCoef(nn.Module):
def __init__(self, discrete, continuous):
super().__init__()
self.discrete = discrete
self.continuous = continuous
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
super().__init__(policy, trainer_settings)
reward_signal_configs = trainer_settings.reward_signals
reward_signal_names = [key.value for key, _ in reward_signal_configs.items()]
if isinstance(policy.actor, SharedActorCritic):
raise UnityTrainerException("SAC does not support SharedActorCritic")
self._critic = ValueNetwork(
reward_signal_names,
policy.behavior_spec.observation_specs,
policy.network_settings,
)
hyperparameters: SACSettings = cast(
SACSettings, trainer_settings.hyperparameters
)
self.tau = hyperparameters.tau
self.init_entcoef = hyperparameters.init_entcoef
self.policy = policy
policy_network_settings = policy.network_settings
self.tau = hyperparameters.tau
self.burn_in_ratio = 0.0
# Non-exposed SAC parameters
self.discrete_target_entropy_scale = 0.2 # Roughly equal to e-greedy 0.05
self.continuous_target_entropy_scale = 1.0
self.stream_names = list(self.reward_signals.keys())
# Use to reduce "survivor bonus" when using Curiosity or GAIL.
self.gammas = [_val.gamma for _val in trainer_settings.reward_signals.values()]
self.use_dones_in_backup = {
name: int(not self.reward_signals[name].ignore_done)
for name in self.stream_names
}
self._action_spec = self.policy.behavior_spec.action_spec
self.q_network = TorchSACOptimizer.PolicyValueNetwork(
self.stream_names,
self.policy.behavior_spec.observation_specs,
policy_network_settings,
self._action_spec,
)
self.target_network = ValueNetwork(
self.stream_names,
self.policy.behavior_spec.observation_specs,
policy_network_settings,
)
ModelUtils.soft_update(self._critic, self.target_network, 1.0)
# We create one entropy coefficient per action, whether discrete or continuous.
_disc_log_ent_coef = torch.nn.Parameter(
torch.log(
torch.as_tensor(
[self.init_entcoef] * len(self._action_spec.discrete_branches)
)
),
requires_grad=True,
)
_cont_log_ent_coef = torch.nn.Parameter(
torch.log(torch.as_tensor([self.init_entcoef])), requires_grad=True
)
self._log_ent_coef = TorchSACOptimizer.LogEntCoef(
discrete=_disc_log_ent_coef, continuous=_cont_log_ent_coef
)
_cont_target = (
-1
* self.continuous_target_entropy_scale
* np.prod(self._action_spec.continuous_size).astype(np.float32)
)
_disc_target = [
self.discrete_target_entropy_scale * np.log(i).astype(np.float32)
for i in self._action_spec.discrete_branches
]
self.target_entropy = TorchSACOptimizer.TargetEntropy(
continuous=_cont_target, discrete=_disc_target
)
policy_params = list(self.policy.actor.parameters())
value_params = list(self.q_network.parameters()) + list(
self._critic.parameters()
)
logger.debug("value_vars")
for param in value_params:
logger.debug(param.shape)
logger.debug("policy_vars")
for param in policy_params:
logger.debug(param.shape)
self.decay_learning_rate = ModelUtils.DecayedValue(
hyperparameters.learning_rate_schedule,
hyperparameters.learning_rate,
1e-10,
self.trainer_settings.max_steps,
)
self.policy_optimizer = torch.optim.Adam(
policy_params, lr=hyperparameters.learning_rate
)
self.value_optimizer = torch.optim.Adam(
value_params, lr=hyperparameters.learning_rate
)
self.entropy_optimizer = torch.optim.Adam(
self._log_ent_coef.parameters(), lr=hyperparameters.learning_rate
)
self._move_to_device(default_device())
@property
def critic(self):
return self._critic
def _move_to_device(self, device: torch.device) -> None:
self._log_ent_coef.to(device)
self.target_network.to(device)
self._critic.to(device)
self.q_network.to(device)
def sac_q_loss(
self,
q1_out: Dict[str, torch.Tensor],
q2_out: Dict[str, torch.Tensor],
target_values: Dict[str, torch.Tensor],
dones: torch.Tensor,
rewards: Dict[str, torch.Tensor],
loss_masks: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
q1_losses = []
q2_losses = []
# Multiple q losses per stream
for i, name in enumerate(q1_out.keys()):
q1_stream = q1_out[name].squeeze()
q2_stream = q2_out[name].squeeze()
with torch.no_grad():
q_backup = rewards[name] + (
(1.0 - self.use_dones_in_backup[name] * dones)
* self.gammas[i]
* target_values[name]
)
_q1_loss = 0.5 * ModelUtils.masked_mean(
torch.nn.functional.mse_loss(q_backup, q1_stream), loss_masks
)
_q2_loss = 0.5 * ModelUtils.masked_mean(
torch.nn.functional.mse_loss(q_backup, q2_stream), loss_masks
)
q1_losses.append(_q1_loss)
q2_losses.append(_q2_loss)
q1_loss = torch.mean(torch.stack(q1_losses))
q2_loss = torch.mean(torch.stack(q2_losses))
return q1_loss, q2_loss
def sac_value_loss(
self,
log_probs: ActionLogProbs,
values: Dict[str, torch.Tensor],
q1p_out: Dict[str, torch.Tensor],
q2p_out: Dict[str, torch.Tensor],
loss_masks: torch.Tensor,
) -> torch.Tensor:
min_policy_qs = {}
with torch.no_grad():
_cont_ent_coef = self._log_ent_coef.continuous.exp()
_disc_ent_coef = self._log_ent_coef.discrete.exp()
for name in values.keys():
if self._action_spec.discrete_size <= 0:
min_policy_qs[name] = torch.min(q1p_out[name], q2p_out[name])
else:
disc_action_probs = log_probs.all_discrete_tensor.exp()
_branched_q1p = ModelUtils.break_into_branches(
q1p_out[name] * disc_action_probs,
self._action_spec.discrete_branches,
)
_branched_q2p = ModelUtils.break_into_branches(
q2p_out[name] * disc_action_probs,
self._action_spec.discrete_branches,
)
_q1p_mean = torch.mean(
torch.stack(
[
torch.sum(_br, dim=1, keepdim=True)
for _br in _branched_q1p
]
),
dim=0,
)
_q2p_mean = torch.mean(
torch.stack(
[
torch.sum(_br, dim=1, keepdim=True)
for _br in _branched_q2p
]
),
dim=0,
)
min_policy_qs[name] = torch.min(_q1p_mean, _q2p_mean)
value_losses = []
if self._action_spec.discrete_size <= 0:
for name in values.keys():
with torch.no_grad():
v_backup = min_policy_qs[name] - torch.sum(
_cont_ent_coef * log_probs.continuous_tensor, dim=1
)
value_loss = 0.5 * ModelUtils.masked_mean(
torch.nn.functional.mse_loss(values[name], v_backup), loss_masks
)
value_losses.append(value_loss)
else:
disc_log_probs = log_probs.all_discrete_tensor
branched_per_action_ent = ModelUtils.break_into_branches(
disc_log_probs * disc_log_probs.exp(),
self._action_spec.discrete_branches,
)
# We have to do entropy bonus per action branch
branched_ent_bonus = torch.stack(
[
torch.sum(_disc_ent_coef[i] * _lp, dim=1, keepdim=True)
for i, _lp in enumerate(branched_per_action_ent)
]
)
for name in values.keys():
with torch.no_grad():
v_backup = min_policy_qs[name] - torch.mean(
branched_ent_bonus, axis=0
)
# Add continuous entropy bonus to minimum Q
if self._action_spec.continuous_size > 0:
v_backup += torch.sum(
_cont_ent_coef * log_probs.continuous_tensor,
dim=1,
keepdim=True,
)
value_loss = 0.5 * ModelUtils.masked_mean(
torch.nn.functional.mse_loss(values[name], v_backup.squeeze()),
loss_masks,
)
value_losses.append(value_loss)
value_loss = torch.mean(torch.stack(value_losses))
if torch.isinf(value_loss).any() or torch.isnan(value_loss).any():
raise UnityTrainerException("Inf found")
return value_loss
def sac_policy_loss(
self,
log_probs: ActionLogProbs,
q1p_outs: Dict[str, torch.Tensor],
loss_masks: torch.Tensor,
) -> torch.Tensor:
_cont_ent_coef, _disc_ent_coef = (
self._log_ent_coef.continuous,
self._log_ent_coef.discrete,
)
_cont_ent_coef = _cont_ent_coef.exp()
_disc_ent_coef = _disc_ent_coef.exp()
mean_q1 = torch.mean(torch.stack(list(q1p_outs.values())), axis=0)
batch_policy_loss = 0
if self._action_spec.discrete_size > 0:
disc_log_probs = log_probs.all_discrete_tensor
disc_action_probs = disc_log_probs.exp()
branched_per_action_ent = ModelUtils.break_into_branches(
disc_log_probs * disc_action_probs, self._action_spec.discrete_branches
)
branched_q_term = ModelUtils.break_into_branches(
mean_q1 * disc_action_probs, self._action_spec.discrete_branches
)
branched_policy_loss = torch.stack(
[
torch.sum(_disc_ent_coef[i] * _lp - _qt, dim=1, keepdim=False)
for i, (_lp, _qt) in enumerate(
zip(branched_per_action_ent, branched_q_term)
)
],
dim=1,
)
batch_policy_loss += torch.sum(branched_policy_loss, dim=1)
all_mean_q1 = torch.sum(disc_action_probs * mean_q1, dim=1)
else:
all_mean_q1 = mean_q1
if self._action_spec.continuous_size > 0:
cont_log_probs = log_probs.continuous_tensor
batch_policy_loss += (
_cont_ent_coef * torch.sum(cont_log_probs, dim=1) - all_mean_q1
)
policy_loss = ModelUtils.masked_mean(batch_policy_loss, loss_masks)
return policy_loss
def sac_entropy_loss(
self, log_probs: ActionLogProbs, loss_masks: torch.Tensor
) -> torch.Tensor:
_cont_ent_coef, _disc_ent_coef = (
self._log_ent_coef.continuous,
self._log_ent_coef.discrete,
)
entropy_loss = 0
if self._action_spec.discrete_size > 0:
with torch.no_grad():
# Break continuous into separate branch
disc_log_probs = log_probs.all_discrete_tensor
branched_per_action_ent = ModelUtils.break_into_branches(
disc_log_probs * disc_log_probs.exp(),
self._action_spec.discrete_branches,
)
target_current_diff_branched = torch.stack(
[
torch.sum(_lp, axis=1, keepdim=True) + _te
for _lp, _te in zip(
branched_per_action_ent, self.target_entropy.discrete
)
],
axis=1,
)
target_current_diff = torch.squeeze(
target_current_diff_branched, axis=2
)
entropy_loss += -1 * ModelUtils.masked_mean(
torch.mean(_disc_ent_coef * target_current_diff, axis=1), loss_masks
)
if self._action_spec.continuous_size > 0:
with torch.no_grad():
cont_log_probs = log_probs.continuous_tensor
target_current_diff = (
torch.sum(cont_log_probs, dim=1) + self.target_entropy.continuous
)
# We update all the _cont_ent_coef as one block
entropy_loss += -1 * ModelUtils.masked_mean(
_cont_ent_coef * target_current_diff, loss_masks
)
return entropy_loss
def _condense_q_streams(
self, q_output: Dict[str, torch.Tensor], discrete_actions: torch.Tensor
) -> Dict[str, torch.Tensor]:
condensed_q_output = {}
onehot_actions = ModelUtils.actions_to_onehot(
discrete_actions, self._action_spec.discrete_branches
)
for key, item in q_output.items():
branched_q = ModelUtils.break_into_branches(
item, self._action_spec.discrete_branches
)
only_action_qs = torch.stack(
[
torch.sum(_act * _q, dim=1, keepdim=True)
for _act, _q in zip(onehot_actions, branched_q)
]
)
condensed_q_output[key] = torch.mean(only_action_qs, dim=0)
return condensed_q_output
@timed
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
"""
Updates model using buffer.
:param num_sequences: Number of trajectories in batch.
:param batch: Experience mini-batch.
:param update_target: Whether or not to update target value network
:param reward_signal_batches: Minibatches to use for updating the reward signals,
indexed by name. If none, don't update the reward signals.
:return: Output from update process.
"""
rewards = {}
for name in self.reward_signals:
rewards[name] = ModelUtils.list_to_tensor(
batch[RewardSignalUtil.rewards_key(name)]
)
n_obs = len(self.policy.behavior_spec.observation_specs)
current_obs = ObsUtil.from_buffer(batch, n_obs)
# Convert to tensors
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]
next_obs = ObsUtil.from_buffer_next(batch, n_obs)
# Convert to tensors
next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs]
act_masks = ModelUtils.list_to_tensor(batch[BufferKey.ACTION_MASK])
actions = AgentAction.from_buffer(batch)
memories_list = [
ModelUtils.list_to_tensor(batch[BufferKey.MEMORY][i])
for i in range(0, len(batch[BufferKey.MEMORY]), self.policy.sequence_length)
]
# LSTM shouldn't have sequence length <1, but stop it from going out of the index if true.
value_memories_list = [
ModelUtils.list_to_tensor(batch[BufferKey.CRITIC_MEMORY][i])
for i in range(
0, len(batch[BufferKey.CRITIC_MEMORY]), self.policy.sequence_length
)
]
if len(memories_list) > 0:
memories = torch.stack(memories_list).unsqueeze(0)
value_memories = torch.stack(value_memories_list).unsqueeze(0)
else:
memories = None
value_memories = None
# Q and V network memories are 0'ed out, since we don't have them during inference.
q_memories = (
torch.zeros_like(value_memories) if value_memories is not None else None
)
# Copy normalizers from policy
self.q_network.q1_network.network_body.copy_normalization(
self.policy.actor.network_body
)
self.q_network.q2_network.network_body.copy_normalization(
self.policy.actor.network_body
)
self.target_network.network_body.copy_normalization(
self.policy.actor.network_body
)
self._critic.network_body.copy_normalization(self.policy.actor.network_body)
sampled_actions, run_out, _, = self.policy.actor.get_action_and_stats(
current_obs,
masks=act_masks,
memories=memories,
sequence_length=self.policy.sequence_length,
)
log_probs = run_out["log_probs"]
value_estimates, _ = self._critic.critic_pass(
current_obs, value_memories, sequence_length=self.policy.sequence_length
)
cont_sampled_actions = sampled_actions.continuous_tensor
cont_actions = actions.continuous_tensor
q1p_out, q2p_out = self.q_network(
current_obs,
cont_sampled_actions,
memories=q_memories,
sequence_length=self.policy.sequence_length,
q2_grad=False,
)
q1_out, q2_out = self.q_network(
current_obs,
cont_actions,
memories=q_memories,
sequence_length=self.policy.sequence_length,
)
if self._action_spec.discrete_size > 0:
disc_actions = actions.discrete_tensor
q1_stream = self._condense_q_streams(q1_out, disc_actions)
q2_stream = self._condense_q_streams(q2_out, disc_actions)
else:
q1_stream, q2_stream = q1_out, q2_out
with torch.no_grad():
# Since we didn't record the next value memories, evaluate one step in the critic to
# get them.
if value_memories is not None:
# Get the first observation in each sequence
just_first_obs = [
_obs[:: self.policy.sequence_length] for _obs in current_obs
]
_, next_value_memories = self._critic.critic_pass(
just_first_obs, value_memories, sequence_length=1
)
else:
next_value_memories = None
target_values, _ = self.target_network(
next_obs,
memories=next_value_memories,
sequence_length=self.policy.sequence_length,
)
masks = ModelUtils.list_to_tensor(batch[BufferKey.MASKS], dtype=torch.bool)
dones = ModelUtils.list_to_tensor(batch[BufferKey.DONE])
q1_loss, q2_loss = self.sac_q_loss(
q1_stream, q2_stream, target_values, dones, rewards, masks
)
value_loss = self.sac_value_loss(
log_probs, value_estimates, q1p_out, q2p_out, masks
)
policy_loss = self.sac_policy_loss(log_probs, q1p_out, masks)
entropy_loss = self.sac_entropy_loss(log_probs, masks)
total_value_loss = q1_loss + q2_loss + value_loss
decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
ModelUtils.update_learning_rate(self.policy_optimizer, decay_lr)
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
ModelUtils.update_learning_rate(self.value_optimizer, decay_lr)
self.value_optimizer.zero_grad()
total_value_loss.backward()
self.value_optimizer.step()
ModelUtils.update_learning_rate(self.entropy_optimizer, decay_lr)
self.entropy_optimizer.zero_grad()
entropy_loss.backward()
self.entropy_optimizer.step()
# Update target network
ModelUtils.soft_update(self._critic, self.target_network, self.tau)
update_stats = {
"Losses/Policy Loss": policy_loss.item(),
"Losses/Value Loss": value_loss.item(),
"Losses/Q1 Loss": q1_loss.item(),
"Losses/Q2 Loss": q2_loss.item(),
"Policy/Discrete Entropy Coeff": torch.mean(
torch.exp(self._log_ent_coef.discrete)
).item(),
"Policy/Continuous Entropy Coeff": torch.mean(
torch.exp(self._log_ent_coef.continuous)
).item(),
"Policy/Learning Rate": decay_lr,
}
return update_stats
def get_modules(self):
modules = {
"Optimizer:q_network": self.q_network,
"Optimizer:value_network": self._critic,
"Optimizer:target_network": self.target_network,
"Optimizer:policy_optimizer": self.policy_optimizer,
"Optimizer:value_optimizer": self.value_optimizer,
"Optimizer:entropy_optimizer": self.entropy_optimizer,
}
for reward_provider in self.reward_signals.values():
modules.update(reward_provider.get_modules())
return modules
|